Learn More
BACKGROUND Low intakes or blood levels of eicosapentaenoic and docosahexaenoic acids (EPA + DHA) are independently associated with increased risk of death from coronary heart disease (CHD). In randomized secondary prevention trials, fish or fish oil have been demonstrated to reduce total and CHD mortality at intakes of about 1 g/day. Red blood cell (RBC)(More)
-Postmenopausal hormone replacement therapy (HRT) is associated with low cardiovascular morbidity and mortality in epidemiological studies. Yet, no randomized trial has examined whether HRT is effective for prevention of coronary heart disease (CHD) in women with increased risk. The objective of this study was to determine whether HRT can slow progression(More)
Platelet-derived growth factor (PDGF) is a potent mitogen thought to propagate atherosclerosis and other proliferative or inflammatory diseases. Some of these diseases are ameliorated in humans by ingestion of omega-3 fatty acids. We investigated mRNA expression of both PDGF-A and PDGF-B in quiescent peripheral blood mononuclear cells from healthy male(More)
INTRODUCTION Epidemiological studies suggest that reduced intakes and/or blood levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are associated with increased risk for depression in adults, but data on adolescents are scarce. The objective of this study was to determine whether red blood cell (RBC) levels of EPA+DHA (the omega-3 index)(More)
Cardiac societies recommend the intake of 1 g/day of the two omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) for cardiovascular disease prevention, treatment after a myocardial infarction, prevention of sudden death, and secondary prevention of cardiovascular disease. These recommendations are based on a body of scientific(More)
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) protect against cardiovascular disease by largely unknown mechanisms. We tested the hypothesis that EPA and DHA may compete with arachidonic acid (AA) for the conversion by cytochrome P450 (CYP) enzymes, resulting in the formation of alternative, physiologically active, metabolites. Renal and(More)
Cytochrome P450 (CYP)-dependent metabolites of arachidonic acid (AA) contribute to the regulation of cardiovascular function. CYP enzymes also accept EPA and DHA to yield more potent vasodilatory and potentially anti-arrhythmic metabolites, suggesting that the endogenous CYP-eicosanoid profile can be favorably shifted by dietary omega-3 fatty acids. To test(More)
Bioavailability of omega-3 fatty acids (FA) depends on their chemical form. Superior bioavailability has been suggested for phospholipid (PL) bound omega-3 FA in krill oil, but identical doses of different chemical forms have not been compared. In a double-blinded crossover trial, we compared the uptake of three EPA+DHA formulations derived from fish oil(More)
BACKGROUND There is a debate currently about whether different chemical forms of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are absorbed in an identical way. The objective of this study was to investigate the response of the omega-3 index, the percentage of EPA+DHA in red blood cell membranes, to supplementation with two different omega-3(More)
Although statistically and clinically significant, reductions of clinical events seen in large scale intervention studies with omega-3 fatty acids in the cardiovascular field were smaller than would have been predicted from the results of epidemiologic studies. In epidemiologic studies, assessment of intake of fish or eicosapentaenoic acid (EPA) and(More)