Learn More
Trees withstand wind and snow loads by synthesising wood that varies greatly in mechanical properties: flexible in twigs and in the stem of the sapling, and rigid in the outer part of the mature stem. The 'molecular Velcro' model of Keckes et al. [2003. Cell-wall recovery after irreversible deformation of wood. Nat. Mater. 2, 810-814] permits the simulation(More)
Polysaccharides were located in the walls of normal and compression wood tracheids of Pinus radiata (radiata pine), Picea sitchensis (Sitka spruce) and Picea abies (Norway spruce) by transmission electron microscopy using immunogold labelling with monoclonal antibodies to (1-->4)-beta-galactan (LM5), (1-->3)-beta-glucan, arabinogalactan proteins (AGPs)(More)
The structure of cellulose microfibrils in wood is not known in detail, despite the abundance of cellulose in woody biomass and its importance for biology, energy, and engineering. The structure of the microfibrils of spruce wood cellulose was investigated using a range of spectroscopic methods coupled to small-angle neutron and wide-angle X-ray scattering.(More)
In the primary walls of growing plant cells, the glucose polymer cellulose is assembled into long microfibrils a few nanometers in diameter. The rigidity and orientation of these microfibrils control cell expansion; therefore, cellulose synthesis is a key factor in the growth and morphogenesis of plants. Celery (Apium graveolens) collenchyma is a useful(More)
The distribution of acetone soluble extractives in Sitka spruce (Picea sitchensis) grown in Northern Britain was determined. Neither yield class, latitude, longitude nor thinning were found to have an impact on the total amount of acetone soluble extractives. More extractives were present in heartwood compared to sapwood but there were no significant(More)
Cellulose from grasses and cereals makes up much of the potential raw material for biofuel production. It is not clear if cellulose microfibrils from grasses and cereals differ in structure from those of other plants. The structures of the highly oriented cellulose microfibrils in the cell walls of the internodes of the bamboo Pseudosasa amabilis are(More)
Mathematical modelling is often used to investigate phenomena difficult or impossible to measure experimentally. This paper presents the constants needed to mathematically model green Pinus radiata D.Don core- and outerwood. The constants include all three elastic and shear moduli along with the six Poisson ratios needed for describing orthotropic materials(More)
The use of dynamic mechanical analysis was explored as a possible method of screening for wood quality in breeding programmes. Viscoelastic properties along the grain of wood from 18-month-old Pinus radiata saplings were measured using a humidity-controlled dynamic mechanical analyser. Storage modulus and tanδ were determined independently for opposite wood(More)
Sequoia sempervirens (D. Don) Endl.) (redwood) has the potential to be grown in New Zealand in commercial forestry operations and is valued for its naturally durable heartwood. A viable redwood industry based on planted forests can only be achieved if the timber produced meets quality expectations, in particular durability. Natural durability is highly(More)
Koromiko [Hebe salicifolia G. Forst. (Pennell)] is a woody angiosperm native to New Zealand and Chile. Hebe spp. belong to the otherwise herbaceous family Plantaginaceae in the order Lamiales. Reaction wood exerting expansional forces was found on the lower side of leaning H. salicifolia stems. Such reaction wood is atypical for angiosperms, which commonly(More)