Clemens Kupke

Learn More
Answering conjunctive queries (CQs) over a set of facts extended with existential rules is a prominent problem in knowledge representation and databases. This problem can be solved using the chase algorithm, which extends the given set of facts with fresh facts in order to satisfy the rules. If the chase terminates, then CQs can be evaluated directly in the(More)
In this paper we argue that the category of Stone spaces forms an interesting base category for coalgebras, in particular, if one considers the Vietoris functor as an analogue to the power set functor on the category of sets. We prove that the so-called descriptive general frames, which play a fundamental role in the semantics of modal logics, can be seen(More)
We study the finitary version of the coalgebraic logic introduced by L. Moss. The syntax of this logic, which is introduced uniformly with respect to a coalgebraic type functor, required to preserve weak pullbacks, extends that of classical propositional logic with a so-called coalgebraic cover modality depending on the type functor. Its semantics is(More)
We generalize some of the central results in automata theory to the abstraction level of coalgebras. In particular, we show that for any standard, weak pullback preserving functor F, the class of recognizable languages of F -coalgebras is closed under taking unions, intersections and projections. Our main technical result concerns a construction which(More)
We tackle the problem of defining a well-founded semantics for Datalog rules with existentially quantified variables in their heads and negations in their bodies. In particular, we provide a well-founded semantics (WFS) for the recent Datalog± family of ontology languages, which covers several important description logics (DLs). To do so, we generalize(More)
We tackle a long-standing open research problem and prove the decidability of query answering under the stable model semantics for guarded existential rules, where rule bodies may contain negated atoms, and provide complexity results. The results extend to guarded Datalog± with negation, and thus provide a natural and decidable stable model semantics to(More)
With coalgebras usually being defined in terms of an endofunctor T on sets, this paper shows that modal logics for T -coalgebras can be naturally described as functors L on boolean algebras. Building on this idea, we study soundness, completeness and expressiveness of coalgebraic logics from the perspective of duality theory. That is, given a logic L for(More)
Answering conjunctive queries (CQs) over a set of facts extended with existential rules is a key problem in knowledge representation and databases. This problem can be solved using the chase (aka materialisation) algorithm; however, CQ answering is undecidable for general existential rules, so the chase is not guaranteed to terminate. Several acyclicity(More)