Clemens Kühn

Learn More
Gene Regulatory Networks (GRNs) control the differentiation, specification and function of cells at the genomic level. The levels of interactions within large GRNs are of enormous depth and complexity. Details about many GRNs are emerging, but in most cases it is unknown to what extent they control a given process, i.e. the grade of completeness is(More)
The high osmolarity glycerol (HOG) signalling system in yeast belongs to the class of Mitogen Activated Protein Kinase (MAPK) pathways that are found in all eukaryotic organisms. It includes at least three scaffold proteins that form complexes, and involves reactions that are strictly dependent on the set of species bound to a certain complex. The scaffold(More)
BACKGROUND Hybrid revascularization (HyR), combining minimally invasive left internal mammary artery (LIMA) bypass grafting to the left anterior descending coronary artery (LAD) and catheter interventional treatment of the remaining coronary lesions, avoids the disadvantages associated with cardiopulmonary bypass (CPB). We investigated the clinical(More)
A range of attributes determines the virulence of human pathogens. During interactions with their hosts, pathogenic microbes often undergo transitions between distinct stages, and the ability to switch between these can be directly related to the disease process. Understanding the mechanisms and dynamics of these transitions is a key factor in understanding(More)
Result Based on the analysis proposed in the article, we computed the robustness of expression of different genes against random parameter variations using Monte Carlo simulations. To this end, we performed multiple simulation runs with different parameter sets, each generating a distinct result. The resulting mRNA concentrations have been averaged for each(More)
Saccharomyces cerevisiae is considered as a model organism for the investigation of cellular and molecular processes and gene regulation. Specifically, the response of S. cerevisiae to increase in osmolarity of the external medium (osmoadaptation) is a model adaptation process. The first mathematical model of volume changes in S. cerevisiae due to(More)
Modeling of specification events during development poses new challenges to biochemical modeling. These include data limitations and a notorious absence of homeostasis in developing systems. The sea urchin is one of the best studied model organisms concerning development and a network, the Endomesoderm Network, has been proposed that is presumed to control(More)
We present a model of osmoadaptation in S. cerevisiae based on existing experimental and theoretical work. In order to investigate the impact of osmoadaptation on glycolysis, this model focuses on the interactions between glycolysis and osmoadaptation, namely the production of glycerol and its influence on flux towards pyruvate. Evaluation of this model(More)
Maintenance of cellular size is a fundamental systems level process that requires balancing of cell growth with proliferation. This is achieved via the cell division cycle, which is driven by the sequential accumulation and destruction of cyclins. The regulatory network around these cyclins, particularly in G1, has been interpreted as a size control network(More)
The fungus Candida albicans is the most common causative agent of human fungal infections and better drugs or drug combination strategies are urgently needed. Here, we present an agent-based model of the interplay of C. albicans with the host immune system and with the microflora of the host. We took into account the morphological change of C. albicans from(More)