Learn More
Nowadays, everybody knows what a hybrid car is. A hybrid car normally has two engines to enhance energy efficiency and reduce CO2 output. Similarly, a hybrid brain-computer interface (BCI) is composed of two BCIs, or at least one BCI and another system. A hybrid BCI, like any BCI, must fulfill the following four criteria: (i) the device must rely on signals(More)
Brain-Computer Interface (BCI) research has become a growing field of interest in the last years. The work presented ranges from machine learning approaches in offline results to the application of a BCI in patients. However, reliable classification of brain activity is a crucial issue in BCI research. In contrast to most articles which present methods to(More)
We studied the reactivity of EEG rhythms (mu rhythms) in association with the imagination of right hand, left hand, foot, and tongue movement with 60 EEG electrodes in nine able-bodied subjects. During hand motor imagery, the hand mu rhythm blocked or desynchronized in all subjects, whereas an enhancement of the hand area mu rhythm was observed during foot(More)
Brain-computer interface (BCI) systems do not work for all users. This article introduces a novel combination of tasks that could inspire BCI systems that are more accurate than conventional BCIs, especially for users who cannot attain accuracy adequate for effective communication. Subjects performed tasks typically used in two BCI approaches, namely(More)
T he purpose of a brain-computer interface (BCI) is to identify the user's intention by observing and analyzing brain activity without relying on signals from muscles or peripheral nerves. 1 Researchers typically rely on electroencepha-lography (EEG) 1-3 to characterize brain activity, but they also use electrocorticography (EcoG), near-infrared(More)
Currently, almost all brain-computer interfaces (BCIs) ignore the relationship between phases of electroencephalographic signals detected from different recording sites (i.e., electrodes). The vast majority of BCI systems rely on feature vectors derived from e.g., bandpower or univariate adaptive autoregressive (AAR) parameters. However, ample evidence(More)
This paper compares different ICA preprocessing algorithms on cross-validated training data as well as on unseen test data. The EEG data were recorded from 22 electrodes placed over the whole scalp during motor imagery tasks consisting of four different classes, namely the imagination of right hand, left hand, foot and tongue movements. Two sessions on(More)
An adaptive P300 brain-computer interface (BCI) using a 12 × 7 matrix explored new paradigms to improve bit rate and accuracy. During online use, the system adaptively selects the number of flashes to average. Five different flash patterns were tested. The 19-flash paradigm represents the typical row/column presentation (i.e. 12 columns and 7 rows). The 9-(More)