Learn More
Brain-Computer Interface (BCI) research has become a growing field of interest in the last years. The work presented ranges from machine learning approaches in offline results to the application of a BCI in patients. However, reliable classification of brain activity is a crucial issue in BCI research. In contrast to most articles which present methods to(More)
Nowadays, everybody knows what a hybrid car is. A hybrid car normally has two engines to enhance energy efficiency and reduce CO2 output. Similarly, a hybrid brain-computer interface (BCI) is composed of two BCIs, or at least one BCI and another system. A hybrid BCI, like any BCI, must fulfill the following four criteria: (i) the device must rely on signals(More)
T he purpose of a brain-computer interface (BCI) is to identify the user's intention by observing and analyzing brain activity without relying on signals from muscles or peripheral nerves. 1 Researchers typically rely on electroencepha-lography (EEG) 1-3 to characterize brain activity, but they also use electrocorticography (EcoG), near-infrared(More)
The BCI competition IV stands in the tradition of prior BCI competitions that aim to provide high quality neuroscientific data for open access to the scientific community. As experienced already in prior competitions not only scientists from the narrow field of BCI compete, but scholars with a broad variety of backgrounds and nationalities. They include(More)
An adaptive P300 brain-computer interface (BCI) using a 12 × 7 matrix explored new paradigms to improve bit rate and accuracy. During online use, the system adaptively selects the number of flashes to average. Five different flash patterns were tested. The 19-flash paradigm represents the typical row/column presentation (i.e. 12 columns and 7 rows). The 9-(More)
A brain-computer interface (BCI) is a new communication channel between humans and computers that translates brain activity into recognizable command and control signals. Attended events can evoke P300 potentials in the electroencephalogram. Hence, the P300 has been used in BCI systems to spell, control cursors or robotic devices, and other tasks. This(More)
The performance of spatial filters based on independent components analysis (ICA) was evaluated by employing principal component analysis (PCA) preprocessing for dimensional reduction. The PCA preprocessing was not found to be a suitable method that could retain motor imagery information in a smaller set of components. In contrast, 6 ICA components selected(More)
OBJECTIVE Many brain-computer interfaces (BCIs) use band power (BP) changes in the electroencephalogram to distinguish between different motor imagery (MI) patterns. Most current approaches do not take connectivity of separated brain areas into account. Our objective is to introduce single-trial connectivity features and apply these features to BCI data. (More)