Learn More
Low-grade fibromyxoid sarcoma (LGFMS) is a variant of fibrosarcoma that was recognized as a distinct tumor entity only quite recently. We previously described a translocation, t(7;16)(q33;p11), that resulted in a fusion of the FUS and CREB3L2 (also known as BBF2H7) genes in two soft tissue tumors that fulfilled morphologic criteria for LGFMS. To delineate(More)
The BCR-ABL1 fusion gene defines the subgroup of acute lymphoblastic leukemia (ALL) with the worst clinical prognosis. To identify oncogenic lesions that combine with BCR-ABL1 to cause ALL, we used Affymetrix Genome-Wide Human SNP arrays (250K NspI and SNP 6.0), fluorescence in situ hybridization, and genomic polymerase chain reaction to study 106 cases of(More)
In this paper we report on the cloning and characterization of mouse CCR8. Like its human homologue, it is predominantly expressed in the thymus. In the periphery, murine CCR8 mRNA was found most abundantly expressed in activated Th2-polarized cells and in NK1.1+ CD4+ T cells. Human CCR8 is also preferentially expressed in human Th2-polarized cells and(More)
B cell lineage acute lymphoblastic leukemia (ALL) arises in virtually all cases from B cell precursors that are arrested at pre-B cell receptor-dependent stages. The Philadelphia chromosome-positive (Ph(+)) subtype of ALL accounts for 25-30% of cases of adult ALL, has the most unfavorable clinical outcome among all ALL subtypes and is defined by the(More)
BACKGROUND Recently, in genome-wide analyses of DNA copy number abnormalities using single nucleotide polymorphism microarrays, genetic alterations targeting PAX5 were identified in over 30% of pediatric patients with acute lymphoblastic leukemia. So far the occurrence of PAX5 alterations and their clinical correlation have not been investigated in adults(More)
Atypical lipomatous tumors (ALTs) are characterized by supernumerary ring chromosomes and/or giant marker chromosomes, which typically are composed of interspersed, amplified 12q-sequences, are C-band negative, lack alpha-satellite sequences, and display high copy numbers of several oncogenes, including HMGA2 (a.k.a. HMGIC) and MDM2, from the 12q13-15(More)
Double minutes (dmin) and homogeneously staining regions (hsr) are the cytogenetic hallmarks of genomic amplification in cancer. Different mechanisms have been proposed to explain their genesis. Recently, our group showed that the MYC-containing dmin in leukemia cases arise by excision and amplification (episome model). In the present paper we investigated(More)
PURPOSE The causes of the aggressive nature of BCR-ABL1-positive adult acute lymphoblastic leukemia (ALL) are unknown. To identify, at the submicroscopic level, oncogenic lesions that cooperate with BCR-ABL1 to induce ALL, we performed an investigation of genomic copy number alterations using single nucleotide polymorphism array, genomic polymerase chain(More)
Double minutes (dmin)-circular, extra-chromosomal amplifications of specific acentric DNA fragments-are relatively frequent in malignant disorders, particularly in solid tumors. In acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS), dmin are observed in approximately 1% of the cases. Most of them consist of an amplified segment from chromosome(More)
Mutations in DNA double-strand breaks (DSB) repair genes are involved in the pathogenesis of hereditary mammary tumors, it is, however, still unclear whether defects in this pathway may play a role in sporadic breast cancer. In this study, we initially determined mRNA expression of 15 DSB related genes by reverse transcription quantitative polymerase chain(More)