Clayton T. Dickson

Silvia Pagliardini8
Dallas Treit7
8Silvia Pagliardini
7Dallas Treit
Learn More
BACKGROUND Although the induction of behavioural unconsciousness during sleep and general anaesthesia has been shown to involve overlapping brain mechanisms, sleep involves cyclic fluctuations between different brain states known as active (paradoxical or rapid eye movement: REM) and quiet (slow-wave or non-REM: nREM) stages whereas commonly used general(More)
A multicompartmental biophysical model of entorhinal cortex layer II stellate cells was developed to analyze the ionic basis of physiological properties, such as subthreshold membrane potential oscillations, action potential clustering, and the medium afterhyperpolarization. In particular, the simulation illustrates the interaction of the persistent sodium(More)
Data from perinatal and juvenile rodents support our hypothesis that the preBötzinger complex generates inspiratory rhythm and the retrotrapezoid nucleus-parafacial respiratory group (RTN/pFRG) generates active expiration (AE). Although the role of the RTN/pFRG in adulthood is disputed, we hypothesized that its rhythmogenicity persists but is typically(More)
Although serotonin (5-HT) is an important neuromodulator in the superficial layers of the medial entorhinal cortex (mEC), there is some disagreement concerning its influences upon the membrane properties of neurons within this region. We performed whole cell recordings of mEC Layer II projection neurons in rat brain slices in order to characterize the(More)
The entorhinal cortex (EC) is a nodal and independent mnemonic element of the medial temporal lobe memory circuit as it forms a bidirectional interface between the neocortex and hippocampus. Within the EC, intra- and inter-lamellar associational connections occur via horizontal and columnar projections, respectively. We undertook a comparative study of(More)
State-dependent EEG in the hippocampus (HPC) has traditionally been divided into two activity patterns: theta, a large-amplitude, regular oscillation with a bandwidth of 3-12 Hz, and large-amplitude irregular activity (LIA), a less regular signal with broadband characteristics. Both of these activity patterns have been linked to the memory functions(More)
Respiratory activity is most fragile during sleep, in particular during paradoxical [or rapid eye movement (REM)] sleep and sleep state transitions. Rats are commonly used to study respiratory neuromodulation, but rodent sleep is characterized by a highly fragmented sleep pattern, thus making it very challenging to examine different sleep states and(More)
Early in their formation, memories are thought to be labile, requiring a process called consolidation to give them near-permanent stability. Evidence for consolidation as an active and biologically separate mnemonic process has been established through posttraining manipulations of the brain that promote or disrupt subsequent retrieval. Consolidation is(More)
In mesial temporal lobe (MTL) epilepsy, which typically involves the hippocampus (HPC), epileptiform events are enhanced during slow wave sleep (SWS). It remains unclear how and why the electroencephalographic (EEG) states that constitute SWS might predispose the HPC to this type of pathological activity. Recently our laboratory has described a novel state(More)
The pretectal nucleus lentiformis mesencephali (LM) and the nucleus of the basal optic root (nBOR) of the avian accessory optic system (AOS) are retinal-recipient visual nuclei involved in the analysis of optic flow that results from self-motion, and in the generation of the optokinetic response. Neurons in these nuclei show direction selectivity in(More)