Clayton Jeffryes

Learn More
Diatoms are single-celled algae that make silica shells or frustules with intricate nanoscale features imbedded within periodic two-dimensional pore arrays. A two-stage photobioreactor cultivation process was used to metabolically insert titanium into the patterned biosilica of the diatom Pinnularia sp. In Stage I, diatom cells were grown up on dissolved(More)
A novel flat panel photobioreactor prototype with bulk liquid flow driven by an external airlift was designed, modeled, and experimentally characterized for the purpose of developing scalable industrial photobioreactors. Baffles were built inside the flat panel part of the reactor, directing the liquid bulk flow in a serpentine way, and the external airlift(More)
The use of algal cell cultures represents a sustainable and environmentally friendly platform for the biogenic production of nanobiomaterials and biocatalysts. For example, advances in the production of biogeneic nanomaterials from algal cell cultures, such as crystalline β-chitin nanofibrils and gold and silver nanoparticles, could enable the 'green'(More)
The marine environment offers both economic and scientific potential which are relatively untapped from a biotechnological point of view. These environments whilst harsh are ironically fragile and dependent on a harmonious life form balance. Exploitation of natural resources by exhaustive wild harvesting has obvious negative environmental consequences. From(More)
The biomineralization capacity of the photosynthetic marine diatom Nitzschia frustulum was harnessed to fabricate Si-Ge oxide nanocomposite materials. Germanium was incorporated into the diatom cell by a two-stage cultivation process. In stage 1, the N. frustulum cell suspension was grown up to cell density of 3 x 10(6) cells/mL in 0.35 mM silicic acid(More)
Phototrophic cell or tissue cultures can produce nanostructured noble metals, oxides and chalcogenides at ambient temperatures and pressures in an aqueous environment and without the need for potentially toxic solvents or the generation of dangerous waste products. These "green" synthesized nanobiomaterials can be used to fabricate biosensors and(More)
To develop dimensionless equations to describe microalgal growth in planar photobioreactor or raceway pond systems that are generalized to all phototrophic species and reactor length scales. Expressions for biomass growth and mean light intensity within a nutrient replete, well-mixed, phototrophic cell culture in a planar cultivation system were developed(More)
The scanning electron microscope (SEM) offers a direct and visually effective means of examining streptococci adhering to pellicle-coated dental enamel. The GTGO-AD (Glutaraldehyde-Tannic acid-Guanidine hydrochloride-Osmium tetroxide-Air-Drying procedure) has the advantage that critical point-drying or freeze-drying need not be employed. It was found that(More)
The macroalga Ochtodes secundiramea is a well-known producer of essential terpene oils with promising biological activities and similar applications to those of microalgal biocompounds in the pharmaceutical, food or cosmetics sectors. This study assesses the environmental impacts associated with the production of five essential terpene oils (myrcene,(More)
Several methodologies have been devised for the design of nanomaterials. The "Holy Grail" for materials scientists is the cost-effective, eco-friendly synthesis of nanomaterials with controlled sizes, shapes and compositions, as these features confer to the as-produced nanocrystals unique properties making them appropriate candidates for valuable(More)