Learn More
To determine the neuropathological substrate of human immunodeficiency virus (HIV)-associated neurocognitive disorders, we examined persons with acquired immunodeficiency syndrome before their death and related their antemortem neuropsychological performance to postmortem indicators of HIV encephalitis, viral burden, and presynaptic and postsynaptic(More)
A spectrum of neurocognitive defects, termed human immunodeficiency virus type 1 (HIV-1)-associated cognitive/motor complex, has been described in patients with acquired immunodeficiency syndrome (AIDS). AIDS dementia complex (ADC) is a severe form of this disease seen in 20 to 30% of terminally ill patients. The etiology of this complex is distinct from(More)
Recent studies of human immunodeficiency virus type 1 (HIV-1) encephalitis have shown that in addition to well established white matter damage, the neocortex shows thinning, loss of large neurons and dendritic damage. In order to identify neuronal populations affected in HIV encephalitis and to determine how neuronal damage relates to the severity of HIV(More)
In the host cell, retroviral DNAs exist in three main forms: unintegrated linear, unintegrated circular, and integrated (the provirus). High levels of unintegrated forms of retroviral DNA often correlate with superinfection and accompanying cytopathic effects, as, for example, in the case of feline acquired immunodeficiency. In culture, HIV-1 infection also(More)
Microglia constitute the primary resident immune surveillance cell in the brain and are thought to play a significant role in the pathogenesis of several neurodegenerative disorders, such as Alzheimer's disease, multiple sclerosis, Parkinson's disease and HIV-associated dementia. Measuring microglial activation in vivo in patients suffering from these(More)
Correlation of thin (5-mm) sagittal high-field (1.5-T) MR images of three brain specimens and 11 normal volunteers with microtome sections of the human cerebellar vermis and hemispheres demonstrates that proton-density-weighted (long TR/short TE) and T2-weighted (long TR/long TE) spin-echo pulse sequences provide the greatest contrast between gray and white(More)
Neuroinflammation perpetuates neuronal damage in many neurological disorders. Activation of resident microglia and infiltration of monocytes/macrophages contributes to neuronal injury and synaptic damage. Noninvasive imaging of these cells in vivo provides a means to monitor progression of disease as well as assess efficacies of potential therapeutics. This(More)
Clinical and pathological evidence of subcortical central nervous system (CNS) damage is observed commonly in patients with human immunodeficiency virus (HIV) encephalitis. Whether other CNS regions are also affected has not been well studied. We report neocortical damage in patients with HIV encephalitis. Using quantitative techniques, we demonstrate(More)
Cell cycle proteins regulate processes as diverse as cell division and cell death. Recently their role in neuronal death has been reported in several models of neurodegeneration. We have reported previously that two key regulators of the cell cycle, the retinoblastoma susceptibility gene product (pRb) and transcription factor E2F1, exhibit altered(More)
While dementia has been observed in approximately one-fourth of terminally ill patients with acquired immunodeficiency syndrome, it has been difficult to attribute this clinical disorder to a single neuropathological substrate. We used a simple and readily reproducible scale for estimating the burden of human immunodeficiency virus (HIV) in the central(More)