Claus Wilhelm Grassmann

Learn More
A major issue of current virology concerns the characterization of cellular proteins that operate as functional components of the viral multiplication process. Here we describe a group of host factors designated as 'NFAR proteins' that are recruited by the replication machinery of bovine viral diarrhea virus, a close relative of the human pathogen hepatitis(More)
Unraveling the molecular basis of the life cycle of hepatitis C virus (HCV), a prevalent agent of human liver disease, entails the identification of cell-encoded factors that participate in the replication of the viral RNA genome. This study provides evidence that the so-called NF/NFAR proteins, namely, NF90/NFAR-1, NF110/NFAR-2, NF45, and RNA helicase A(More)
As an initial approach to define the requirements for the replication of bovine viral diarrhea virus (BVDV), a member of the Flaviviridae family with a positive-strand RNA genome, full-length genomic and subgenomic RNAs were originated by in vitro transcription of diverse BVDV cDNA constructs and transfected into eucaryotic host cells. RNA replication was(More)
Bovine viral diarrhea virus (BVDV), a member of the genus Pestivirus in the family Flaviviridae, has a positive-stranded RNA genome consisting of a single open reading frame and untranslated regions (UTRs) at the 5' and 3' ends. Computer modeling suggested the 3' UTR comprised single-stranded regions as well as stem-loop structures-features that were(More)
The genomes of positive-strand RNA viruses strongly resemble cellular mRNAs. However, besides operating as a messenger to generate the virus-encoded proteins, the viral RNA serves also as a template during replication. A central issue of the viral life cycle, the coordination of protein and RNA synthesis, is yet poorly understood. Examining bovine viral(More)
The functional analysis of molecular determinants which control the replication of pestiviruses was considerably facilitated by the finding that subgenomic forms of the positive-strand RNA genome of BVDV (bovine viral diarrhea virus) are capable of autonomous replication in transfected host cells. The prototype replicon, BVDV DI9c, consists of the genomic(More)
Bovine viral diarrhea virus (BVDV), a Pestivirus member of the Flaviviridae family, has a positive-stranded RNA genome which consists of a single open reading frame (ORF) and untranslated regions (UTRs) at the 5' and 3' ends. The 5' UTR harbors extensive RNA structure motifs; most of them were shown to contribute to an internal ribosomal entry site (IRES),(More)
Studies on the replication of the pestivirus bovine viral diarrhea virus (BVDV) were considerably facilitated by the recent discovery of an autonomous subgenomic BVDV RNA replicon (DI9c). DI9c comprises mainly the untranslated regions of the viral genome and the coding region of the nonstructural proteins NS3, NS4A, NS4B, NS5A, and NS5B. To assess the(More)
The 5' non-translated regions (5'NTRs) of hepatitis C virus (HCV) and bovine viral diarrhea virus (BVDV) initiate translation of the viral RNA genome through an internal ribosomal entry site (IRES) and operate as major determinants of the RNA replication cycle. We report on comparative studies with both virus systems demonstrating that the functional(More)
Recently, a benzo-1,2,4-thiadiazine was shown to be a potent, specific inhibitor of the hepatitis C virus (HCV) RNA polymerase [J. Biol. Chem. 277 (2002) 32327]. Herein, we present several lines of evidence to demonstrate that thiadiazine compound 4 (C(21)H(21)N(3)O(4)S) is highly synergistic with interferon-alpha (IFN-alpha) and disrupts HCV replicon RNA(More)
  • 1