Claus Michael Schneider

Learn More
The underlying physics of all ferromagnetic behavior is the cooperative interaction between individual atomic magnetic moments that results in a macroscopic magnetization. In this work, we use extreme ultraviolet pulses from high-harmonic generation as an element-specific probe of ultrafast, optically driven, demagnetization in a ferromagnetic Fe-Ni alloy(More)
Uncovering the physical mechanisms that govern ultrafast charge and spin dynamics is crucial for understanding correlated matter as well as the fundamental limits of ultrafast spin-based electronics. Spin dynamics in magnetic materials can be driven by ultrashort light pulses, resulting in a transient drop in magnetization within a few hundred femtoseconds.(More)
The combination of magnetic materials and carbon nanotubes (CNTs) starts to become a promising research direction. There are at least two links that can be established between magnetism and carbon nanotubes. Firstly, ferromagneti-cally contacted carbon nanotubes reveal spin dependent transport effects with high magnetoresistance values [1, 2]. Secondly,(More)
The study of ultrafast dynamics in magnetic materials provides rich opportunities for greater fundamental understanding of correlated phenomena in solid-state matter, because many of the basic microscopic mechanisms involved are as-yet unclear and are still being uncovered. Recently, two different possible mechanisms have been proposed to explain ultrafast(More)
Ultrashort pulses of extreme ultraviolet light from high-harmonic generation are a new tool for probing coupled charge, spin, and phonon dynamics with element specificity, attosecond pump-probe synchronization , and time resolution of a few femtoseconds in a tabletop apparatus. In this paper, we address an important question in magneto-optics that has(More)
Time reversal dictates that nonmagnetic, centrosymmetric crystals cannot be spin-polarized as a whole. However, it has been recently shown that the electronic structure in these crystals can in fact show regions of high spin-polarization, as long as it is probed locally in real and in reciprocal space. In this article we present the first observation of(More)
Stoichiometric FeRh undergoes a temperature-induced antiferromagnetic (AFM) to ferromagnetic (FM) transition at ~350 K. In this Letter, changes in the electronic structure accompanying this transition are investigated in epitaxial FeRh thin films via bulk-sensitive valence-band and core-level hard x-ray photoelectron spectroscopy with a photon energy of(More)
In the originally published version of the Article, an incorrect reference number was cited. The final sentence of the first paragraph of the Introduction section should read: 'The likely reasons are technical difficulties in generating atomic size electron vortex beams, together with fine control of their resulting orbital angular momentum in the case of(More)
The continuing revolutionary success of mobile computing and smart devices calls for the development of novel, cost- and energy-efficient memories. Resistive switching is attractive because of, inter alia, increased switching speed and device density. On electrical stimulus, complex nanoscale redox processes are suspected to induce a resistance change in(More)