Learn More
Weighted scale-free networks with topology-dependent interactions are studied. It is shown that the possible universality classes of critical behavior, which are known to depend on topology, can also be explored by tuning the form of the interactions at fixed topology. For a model of opinion formation, simple mean field and scaling arguments show that a(More)
In this paper we present a discussion of a phenomenological model of the MAPK cascade which was originally proposed by Angeli et al. (PNAS 101, 1822 (2004)). The model and its solution are extended in several respects: a) an analytical solution is given for the cascade equilibria, exploiting a parameter-based symmetry of the rate equations; b) we discuss(More)
We introduce a minimal model description for the dynamics of transcriptional regulatory networks. It is studied within a mean-field approximation, i.e., by deterministic ODE's representing the reaction kinetics, and by stochastic simulations employing the Gillespie algorithm. We elucidate the different results that both approaches can deliver, depending on(More)
Construction of synthetic genetic networks requires the assembly of DNA fragments encoding functional biological parts in a defined order. Yet this may become a time-consuming procedure. To address this technical bottleneck, we have created a series of Gateway shuttle vectors and an integration vector, which facilitate the assembly of artificial genes and(More)
A simulation approach to the stochastic growth of bacterial towers is presented, in which a non-uniform and finite nutrient supply essentially determines the emerging structure through elementary chemotaxis. The method is based on cellular automata and we use simple, microscopic, local rules for bacterial division in nutrient-rich surroundings. Stochastic(More)
Spatial gradients of diffusible signalling molecules play crucial roles in controlling diverse cellular behaviour such as cell differentiation, tissue patterning and chemotaxis. In this paper, we report the design and testing of a microfluidic device for diffusion-based gradient generation for cellular assays. A unique channel design of the device(More)
For faithful chromosome segregation during cell division, correct attachments must be established between sister chromosomes and microtubules from opposite spindle poles through kinetochores (chromosome bi-orientation). Incorrect attachments of kinetochore microtubules (kMTs) lead to chromosome mis-segregation and aneuploidy, which is often associated with(More)
  • 1