Learn More
Rhodopsin is the prototypical G protein-coupled receptor, responsible for detection of dim light in vision. Upon absorption of a photon, rhodopsin undergoes structural changes, characterised by distinct photointermediates. Currently, only the ground-state structure has been described. We have determined a density map of a photostationary state highly(More)
We have determined the structure of bovine rhodopsin at 2.65 A resolution using untwinned native crystals in the space group P3(1), by molecular replacement from the 2.8 A model (1F88) solved in space group P4(1). The new structure reveals mechanistically important details unresolved previously, which are considered in the membrane context by docking the(More)
Rhodopsin, the pigment protein responsible for dim-light vision, is a G protein-coupled receptor that converts light absorption into the activation of a G protein, transducin, to initiate the visual response. We have crystallised detergent-solubilised bovine rhodopsin in the native form and after chemical modifications as needles 10-40 microm in(More)
Dialysis of rhodopsin isolated from bovine rod outer segments resulted in the formation of a new two-dimensional crystal form suitable for electron crystallography. The crystals obtained were tubular or single layers and showed p22121 symmetry (a=60.6(+/-0.8) A, b=86.3(+/-1.6) A). For the first time the size and order of the crystals allowed us to take(More)
The structure in the extracellular, intradiscal domain of rhodopsin surrounding the Cys110-Cys187 disulfide bond has been shown to be important for correct folding of this receptor in vivo. Retinitis pigmentosa misfolding mutants of the apoprotein opsin (such as P23H) misfold, as defined by a deficiency in ability to bind 11-cis retinal and form rhodopsin.(More)
G-protein-coupled receptors are integral membrane proteins that respond to environmental signals and initiate signal transduction pathways, which activate cellular processes. Rhodopsin, a well known member of the G-protein-coupled receptor family, is located in the disk membranes of the rod outer segment, where it is responsible for the visualization of dim(More)
The published electron microscope and X-ray structures of rhodopsin have made available a detailed picture of the inactive dark state of rhodopsin. Yet, the photointermediates of rhodopsin that ultimately lead to the activated receptor species still await a similar analysis. Such an analysis first requires the generation and characterization of the(More)
Integral membrane proteins do not fare well when extracted from biological membranes and are unstable or lose activity in detergents commonly used for structure and function investigations. We show that phospholipid bicelles provide a valuable means of preserving alpha-helical membrane proteins in vitro by supplying a soluble lipid bilayer fragment. Both(More)
We have used site-specific heavy-atom labelling and X-ray diffraction to localize single amino acid residues in the cytoplasmic domain of the integral membrane protein rhodopsin, the dim-light photoreceptor of retinal vertebrate rod cells. Two-dimensional orthorhombic crystals of the space group p22(1)2(1) (a=59.5(+/-1) A and b=82.7(+/-1.5) A) were produced(More)