Learn More
  • C Orizio
  • 1993
Muscular sound is a mechanical phenomenon detectable at the surface of an active muscle, which has been known and described since 1800. Only recently, because of the availability of reliable transducers and sophisticated analysis techniques, has this signal become attractive for monitoring the mechanical aspects of muscle contraction. The muscular sound(More)
The surface mechanomyogram (MMG) (detectable at the muscle surface as MMG by accelerometers, piezoelectric contact sensors or other transducers) is the summation of the activity of single motor units (MUs). Each MU contribution is related to the pressure waves generated by the active muscle fibres. The first part of this article will review briefly the(More)
The contracting muscle generates a low frequency sound detectable at the belly surface, ranging from 11 to 40 Hz. To study the relationship between the muscular sound and the intensity of the contraction a sound myogram (SMG) was recorded by a contact sensor from the biceps brachii of seven young healthy males performing 4-s isometric contractions from 10%(More)
The aim of the study was to investigate the influence of two different transcutaneous neuromuscular electrical stimulation procedures on evoked muscle torque and local tissue oxygenation. In the first one (MP mode), the cathode was facing the muscle main motor point and stimulus amplitude was set to the level eliciting the maximal myoelectrical activation(More)
The frequency content of muscular sound (MS), detected by placing a contact sensor transducer over the belly of the biceps brachii during 10 isometric contractions of 4 s each [10-100% of maximal voluntary contraction (MVC)] in seven sedentary men, was analyzed by the maximum entropy spectral estimation and the fast Fourier transform methods. With(More)
This work investigated motor unit (MU) recruitment during transcutaneous electrical stimulation (TES) of the tibialis anterior (TA) muscle, using experimental and simulated data. Surface electromyogram (EMG) and torque were measured during electrically-elicited contractions at different current intensities, on eight healthy subjects. EMG detected during(More)
Maximum voluntary contraction (MVC) and cross-sectional area (CSA) of fast and slow twitch fibers are reduced in the lower limb muscles of elderly subjects. Isokinetic training at medium and high velocities has been widely used to improve muscle performance and force in young as well as elderly subjects. EMG and mechanomyogram (MMG) are compound signals in(More)
The dimensional changes of the muscle fibres of the active motor units generate a signal, labelled as mechanomyogram (MMG), related to the number and firing rate of the active fibres. Aim of the study was to evaluate if the root mean square (RMS) of the surface EMG, of the MMG and their relationship (electromechanical coupling efficiency, EMCE) are related(More)
The purpose of this work was to verify if deviation from the mirror-like behaviour of the motor units activation strategy (MUAS) and de-activation strategy (MUDS) and the degree of the error of the motor control system, during consecutive linearly increasing-decreasing isometric tension tasks, depend on the maximum reached tension and/or on the rate of(More)
The aim of this work was to evaluate the influence of the ageing process on the time and frequency domain properties of the surface electrical and mechanical activity of muscle. In 20 healthy elderly subjects (10 men and 10 women, age range 65-78 years) and in 20 young controls, during isometric contractions of the elbow flexors in the 20%-100% range of the(More)