Learn More
—In this paper, the problem of online estimation of the mechanical impedance during the contact of a robotic system with an unknown environment is considered. This problem is of great interest when controlling a robot in an unstructured and unknown environment, such as in telemanipulation tasks, since it can be easily shown that the exploitation of the(More)
Rendering stiff virtual objects remains a core challenge in the field of haptics. A study of this problem is presented, which relates the maximum achievable object stiffness to the elements of the control loop. In particular, we examine how the sampling rate and quantization of position measurements interact with the inertia, natural viscous, and Coulomb(More)
— The first part of this paper describes the development of a humanoid robot hand based on an endoskeleton made of rigid links connected with elastic hinges, actuated by sheath routed tendons and covered by continuous compliant pulps. The project is called UB Hand 3 (University of Bologna Hand, 3rd version) and aims to reduce the mechanical complexity of(More)
—In this paper, we study the interconnection of two robots, which are modeled as port-controlled Hamiltonian systems through a transmission line with time delay. There will be no analysis of the time delay, but its presence justifies the use of scattering variables to preserve passivity. The contributions of the paper are twofold: first, a geometrical,(More)
— Physical human-robot interaction requires the development of safe and dependable robots. This involves the mechanical design of lightweight and compliant manipula-tors and the definition of motion control laws that allow to combine compliant behavior in reaction to possible collisions, while preserving accuracy and performance of rigid robots in free(More)
— The time domain passivity framework is attracting interest as a method for granting stability in both telerobotics and haptic contexts; this paper employs this approach in order to introduce a novel concept, the Bilateral Energy Transfer for haptic telepresence. Loosely speaking, the Bilateral Energy Transfer is the straightforward transfer of energy(More)
Among the methods to grant the stability of a telemanipulation system , the bilateral time domain passivity framework has the appealing characteristic to consider both the forces and velocities signal exchanged between the master and slave systems, and the power introduced or dissipated by the elements that compose the whole telemanipulation system. In(More)
The possibility of operating in remote environments by means of telecontrolled systems has always been considered of relevant interest in robotics. For this reason, in the literature a number of different control schemes has been proposed for telemanipulation systems, based on several criteria such as passivity, compliance, predictive or adaptive control,(More)