Learn More
Nuclear factor kappaB (NF-kappaB) plays a pivotal role in inflammation, immunity, stress responses, and protection from apoptosis. Canonical activation of NF-kappaB is dependent on the phosphorylation of the inhibitory subunit IkappaBalpha that is mediated by a multimeric, high molecular weight complex, called IkappaB kinase (IKK) complex. This is composed(More)
Perturbing the endoplasmic reticulum homeostasis of thyroid cell lines with thapsigargin, a specific inhibitor of the sarcoendoplasmic reticulum Ca(2+) adenosine triphosphatases, and tunicamycin, an inhibitor of the N-linked glycosylation, blocked Tg in the endoplasmic reticulum. This event was signaled outside the endoplasmic reticulum and resulted in(More)
Nuclear factor kappaB (NF-kappaB) plays a pivotal role in numerous cellular processes, including stress response, inflammation, and protection from apoptosis. Therefore, the activity of NF-kappaB needs to be tightly regulated. We have previously identified a novel gene, named CIKS (connection to IkappaB-kinase and SAPK), able to bind the regulatory sub-unit(More)
Thyroid cancer includes three types of carcinomas classified as differentiated thyroid carcinomas (DTC), medullary thyroid carcinomas, and undifferentiated carcinomas (UTC). DTC and medullary thyroid carcinomas generally have a good prognosis, but UTC are usually fatal. Consequently, there is a need for new effective therapeutic modalities to improve the(More)
The endoplasmic reticulum represents the quality control site of the cell for folding and assembly of cargo proteins. A variety of conditions can alter the ability of the endoplasmic reticulum (ER) to properly fold proteins, thus resulting in ER stress. Cells respond to ER stress by activating different signal transduction pathways leading to increased(More)
The Drosophila dopa decarboxylase gene (Ddc) is expressed in a reproducible set of approximately 150 neurons, and in a subset of the glia of the third instar larva's central nervous system (CNS). Expression in this pattern requires a cell type-specific neuronal enhancer/glial repressor region located 1000 bp from the transcriptional start site, and specific(More)
  • 1