Claudio José Magon

Learn More
Anisotropic interactions present in three new nitroxide radicals prepared by N,N addition of NO to various borane-phosphane frustrated Lewis pairs (FLPs) have been characterized by continuous-wave (cw) and pulsed X-band EPR spectroscopies in solid FLP-hydroxylamine matrices at 100 K. Anisotropic g-tensor values and (11)B, (14)N, and (31)P hyperfine coupling(More)
When the spin Hamiltonian is a linear function of the magnetic field intensity the resonance fields can be determined, in principle, by an eigenfield equation. In this report, we show a new technical approach to the resonance field problem where the eigenfield equation leads to a dynamic equation or, more specifically, to a first order differential equation(More)
The structure of laser glasses in the system (Y(2)O(3))(0.2){(Al(2)O(3))(x))(B(2)O(3))(0.8-x)} (0.15 ≤ x ≤ 0.40) has been investigated by means of (11)B, (27)Al, and (89)Y solid state NMR as well as electron spin echo envelope modulation (ESEEM) of Yb-doped samples. The latter technique has been applied for the first time to an aluminoborate glass system.(More)
Q-band and X-band pulsed electron paramagnetic resonance spectroscopic methods (EPR) in the solid state were employed to refine the parameters characterizing the anisotropic interactions present in six nitroxide radicals prepared by N,N addition of NO to various borane-phosphane frustrated Lewis pairs (FLPs). The EPR spectra are characterized by the(More)
IQSC, Universidade de São Paulo, 13566-590, São Carlos, SP, Brazil IFSC, Universidade de São Paulo, POBox 369, 13560-970, São Carlos, SP, Brazil Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Bucharest, Romania Laboratoire de Chimie, CNRS, Université Claude Bernard, ENS-Lyon, 46 Allée d’Italie, 69364 Lyon cedex 07,(More)
New glass compositions in the system 1 – x(SbPO4-ZnO-PbO)-xMnO (with 0 ≤ x ≤ 20 in mol%) were prepared by melt-quenching methodology. Thermal, structural and optical properties of the new glasses were systematically studied by means of differential scanning calorimetry (DSC), UV-Vis and Raman spectroscopy, fluorescence and electronic paramagnetic resonance(More)
Glass structure and fluorine motion dynamics are investigated in lead-cadmium fluorgermanate glasses by means of differential scanning calorimetry, Raman scattering, x-ray absorption (EXAFS), electrical conductivity (EC), and (19)F nuclear magnetic resonance (NMR) techniques. Glasses with composition 60PbGeO(3)-xPbF(2)-yCdF(2) (in mol %), with x+y=40 and(More)
Proton nuclear magnetic resonance ((1)H NMR) spectroscopy for detection of biochemical changes in biological samples is a successful technique. However, the achieved NMR resolution is not sufficiently high when the analysis is performed with intact cells. To improve spectral resolution, high resolution magic angle spinning (HR-MAS) is used and the broad(More)
Electron spin-lattice relaxation rates for the low spin [Ni(CN)(4)](1-) and [Ni(CN)(4)](3-) complexes in NaCl host lattice were measured by the inversion recovery technique in the temperature range 7-50K. The data for both paramagnetic species fit very well to a relaxation process involving localized anharmonic vibration modes, also responsible for the(More)
In this work we report results of continuous wave (CW) electron paramagnetic resonance (EPR) spectroscopy of vanadium oxide nanotubes. The observed EPR spectra are composed of a weak well-resolved spectrum of isolated V(4+) ions on top of an intense and broad structure-less line shape, attributed to spin-spin exchanged V(4+) clusters. With the purpose to(More)