Learn More
We previously reported that exposure to extremely low-frequency electromagnetic fields (ELFEFs) increases the expression and function of voltage-gated Ca2+)channels and that Ca2+ influx through Ca(v)1 channels plays a key role in promoting the neuronal differentiation of neural stem/progenitor cells (NSCs). The present study was conducted to determine(More)
Trimethyltin (TMT) intoxication is considered a suitable experimental model to study the molecular basis of selective hippocampal neurodegeneration as that occurring in several neurodegenerative diseases. We have previously shown that rat hippocampal neurons expressing the Ca(2+)-binding protein calretinin (CR) are spared by the neurotoxic action of TMT(More)
Changes in intracellular Ca2+ levels are an important signal underlying neuron-glia cross-talk, but little is known about the possible role of voltage-gated Ca2+ channels (VGCCs) in controlling glial cell Ca2+ influx. We investigated the pharmacological and biophysical features of VGCCs in cultured rat cortical astrocytes. In whole-cell patch-clamp(More)
Alzheimer's disease is a devastating cureless neurodegenerative disorder affecting >35 million people worldwide. The disease is caused by toxic oligomers and aggregates of amyloid β protein and the microtubule-associated protein tau. Recently, the Lys-specific molecular tweezer CLR01 has been shown to inhibit aggregation and toxicity of multiple(More)
Calorie restriction delays brain senescence and prevents neurodegeneration, but critical regulators of these beneficial responses other than the NAD(+)-dependent histone deacetylase Sirtuin-1 (Sirt-1) are unknown. We report that effects of calorie restriction on neuronal plasticity, memory and social behavior are abolished in mice lacking cAMP(More)
Neural stem cells generate neurons in the hippocampal dentate gyrus in mammals, including humans, throughout adulthood. Adult hippocampal neurogenesis has been the focus of many studies due to its relevance in processes such as learning and memory and its documented impairment in some neurodegenerative diseases. However, we are still far from having a(More)
AIMS The pathogenesis of myotonic dystrophy type 1 (DM1) and type 2 (DM2) has been related to the aberrant splicing of several genes, including those encoding for ryanodine receptor 1 (RYR1), sarcoplasmatic/endoplasmatic Ca(2+)-ATPase (SERCA) and α1S subunit of voltage-gated Ca(2+) channels (Cav 1.1). The aim of this study is to determine whether(More)
The effects of transcranial direct current stimulation (tDCS) on brain functions and the underlying molecular mechanisms are yet largely unknown. Here we report that mice subjected to 20-min anodal tDCS exhibited one-week lasting increases in hippocampal LTP, learning and memory. These effects were associated with enhanced: i) acetylation of brain-derived(More)
Ca(2+) influx through voltage-gated Ca(2+) channels, especially the L-type (Ca(v)1), activates downstream signaling to the nucleus that affects gene expression and, consequently, cell fate. We hypothesized that these Ca(2+) signals may also influence the neuronal differentiation of neural stem/progenitor cells (NSCs) derived from the brain cortex of(More)
A growing body of epidemiologic and experimental data point to chronic bacterial and viral infections as possible risk factors for neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Infections of the central nervous system, especially those characterized by a chronic progressive course, may(More)