Learn More
HL-60 leukemia cells, Rat-1 fibroblasts and WI-38 diploid fibroblasts were exposed for 24-72 h to 0.5-1.0-mT 50-Hz extremely low frequency electromagnetic field (ELF-EMF). This treatment induced a dose-dependent increase in the proliferation rate of all cell types, namely about 30% increase of cell proliferation after 72-h exposure to 1.0 mT. This was(More)
Transcranial direct current stimulation (tDCS) can produce a lasting polarity-specific modulation of cortical excitability in the brain, and it is increasingly used in experimental and clinical settings. Recent studies suggest that the after-effects of tDCS are related to molecular mechanisms of activity-dependent synaptic plasticity. Here we investigated(More)
AIMS The pathogenesis of myotonic dystrophy type 1 (DM1) and type 2 (DM2) has been related to the aberrant splicing of several genes, including those encoding for ryanodine receptor 1 (RYR1), sarcoplasmatic/endoplasmatic Ca(2+)-ATPase (SERCA) and α1S subunit of voltage-gated Ca(2+) channels (Cav 1.1). The aim of this study is to determine whether(More)
Possible correlation between the effects of electromagnetic fields (EFs) on voltage-gated Ca(2+) channels, cell proliferation and apoptosis was investigated in neural and neuroendocrine cells. Exposure to 50 Hz EFs significantly enhanced proliferation in human neuroblastoma IMR32 (+40%) and rat pituitary GH3 cells (+38%). In IMR32 cells EF stimulation also(More)
We previously reported that exposure to extremely low-frequency electromagnetic fields (ELFEFs) increases the expression and function of voltage-gated Ca2+)channels and that Ca2+ influx through Ca(v)1 channels plays a key role in promoting the neuronal differentiation of neural stem/progenitor cells (NSCs). The present study was conducted to determine(More)
Dopamine/cAMP signaling has been reported to mediate behavioral responses related to drug addiction. It also modulates the plasticity and firing properties of medium spiny neurons (MSNs) in the nucleus accumbens (NAc), although the effects of cAMP signaling on the resting membrane potential (RMP) of MSNs has not been specifically defined. In this study,(More)
Ca(2+) influx through voltage-gated Ca(2+) channels, especially the L-type (Ca(v)1), activates downstream signaling to the nucleus that affects gene expression and, consequently, cell fate. We hypothesized that these Ca(2+) signals may also influence the neuronal differentiation of neural stem/progenitor cells (NSCs) derived from the brain cortex of(More)
Changes in intracellular Ca2+ levels are an important signal underlying neuron-glia cross-talk, but little is known about the possible role of voltage-gated Ca2+ channels (VGCCs) in controlling glial cell Ca2+ influx. We investigated the pharmacological and biophysical features of VGCCs in cultured rat cortical astrocytes. In whole-cell patch-clamp(More)
The involvement of metabotropic glutamate receptors type 5 (mGluR5) in drug-induced behaviours is well-established but limited information is available on their functional roles in addiction-relevant brain areas like the nucleus accumbens (NAc). This study demonstrates that pharmacological and synaptic activation of mGluR5 increases the spike discharge of(More)
Nitric oxide (NO) regulates the release of catecholamines from the adrenal medulla but the molecular targets of its action are not yet well identified. Here we show that the NO donor sodium nitroprusside (SNP, 200 microM) causes a marked depression of the single Ca(V)1 L-channel activity in cell-attached patches of bovine chromaffin cells. SNP action was(More)