Claudio D Stern

Learn More
Contact inhibition of locomotion was discovered by Abercrombie more than 50 years ago and describes the behaviour of fibroblast cells confronting each other in vitro, where they retract their protrusions and change direction on contact. Its failure was suggested to contribute to malignant invasion. However, the molecular basis of contact inhibition of(More)
Gastrulation generates mesoderm and endoderm from embryonic epiblast; soon after, the neural plate is established within the epiblast-both events require FGF signaling. We describe a zinc finger transcriptional activator, Churchill (ChCh), which acts as a switch between different roles of FGF. FGF induces ChCh slowly; this activates(More)
A dominant molecular explanation for neural induction is the 'default model', which proposes that the ectoderm is pre-programmed towards a neural fate, but is normally inhibited by endogenous BMPs. Although there is strong evidence favouring this in Xenopus, data from other organisms suggest more complexity, including an involvement of FGF and modulation of(More)
For three-quarters of a century, developmental biologists have been asking how the nervous system is specified as distinct from the rest of the ectoderm during early development, and how it becomes subdivided initially into distinct regions such as forebrain, midbrain, hindbrain and spinal cord. The two events of 'neural induction' and 'early neural(More)
The organizer is a unique region in the gastrulating embryo that induces and patterns the body axis. It arises before gastrulation under the influence of the Nieuwkoop center. We show that during gastrulation, cell movements bring cells into and out of the chick organizer, Hensen's node. During these movements, cells acquire and lose organizer properties(More)
We have investigated the cell interactions and signalling molecules involved in setting up and maintaining the border between the neural plate and the adjacent non-neural ectoderm in the chick embryo at primitive streak stages. msx-1, a target of BMP signalling, is expressed in this border at a very early stage. It is induced by FGF and by signals from the(More)
Embryonic stem cells (ESC) have been isolated from pregastrulation mammalian embryos. The maintenance of their pluripotency and ability to self-renew has been shown to be governed by the transcription factors Oct4 (Pou5f1) and Nanog. Oct4 appears to control cell-fate decisions of ESC in vitro and the choice between embryonic and trophectoderm cell fates in(More)
BACKGROUND Most of the molecules known to regulate left-right asymmetry in vertebrate embryos are expressed on the left side of the future trunk region of the embryo. Members of the protein family comprising Cerberus and the putative tumour suppressor Dan have not before been implicated in left-right asymmetry. In Xenopus, these proteins have been shown to(More)
The introduction of in ovo electroporation a decade ago has helped the chick embryo to become a powerful system to study gene regulation and function during development. Although this is a simple procedure for embryos of 2-d incubation, earlier stages (from laying to early neurulation, 0-1 d) present special challenges. Here we describe a robust and(More)