Learn More
Endurance exercise training as well as leucine supplementation modulates glucose homeostasis and protein turnover in mammals. Here, we analyze whether leucine supplementation alters the effects of endurance exercise on these parameters in healthy mice. Mice were distributed into sedentary (C) and exercise (T) groups. The exercise group performed a 12-week(More)
Pancreatic beta-cells and skeletal muscle act in a synergic way in the control of systemic glucose homeostasis. Several pyruvate-dependent and -independent shuttles enhance tricarboxylic acid cycle intermediate (TACI) anaplerosis and increase beta-cell ATP:ADP ratio, triggering insulin exocytotic mechanisms. In addition, mitochondrial TACI cataplerosis(More)
INTRODUCTION Endurance training improves peripheral insulin sensitivity in the liver and the skeletal muscle, but the mechanism for this effect is poorly understood. Recently, it was proposed that insulin clearance plays a major role in both glucose homeostasis and insulin sensitivity. Therefore, our goal was to determine the mechanism by which endurance(More)
Endurance training has been shown to increase pancreatic β-cell function and mass. However, whether exercise modulates β-cell growth and survival pathways signaling is not completely understood. This study investigated the effects of exercise on growth and apoptotic markers levels in rat pancreatic islets. Male Wistar rats were randomly assigned to 8-wk(More)
Pancreatic beta cell (β) dysfunction is an outcome of malnutrition. We assessed the role of the amplifying pathway (AMP PATH) in β cells in malnourished obese mice. C57Bl-6 mice were fed a control (C) or a low-protein diet (R). The groups were then fed a high-fat diet (CH and RH). AMP PATH contribution to insulin secretion was assessed upon incubating(More)
  • 1