Claudio Acuña-Castillo

Learn More
The rat ATP P2X4 receptor was expressed in Xenopus laevis oocytes to assess the effect of zinc and copper as possible regulators of purinergic mechanisms. ATP applied for 20 s evoked an inward cationic current with a median effective concentration (EC50) of 21.4+/-2.8 microM and a Hill coefficient (nH) of 1.5+/-0.1. Coapplication of ATP plus 10 microM zinc(More)
Zinc and copper are atypical modulators of ligand-gated ionic channels in the central nervous system. We sought to identify the amino acids of the rat P2X4 receptor involved in trace metal interaction, specifically in the immediate linear vicinity of His140, a residue previously identified as being critical for copper-induced inhibition of the ATP-evoked(More)
The pharmacological profile of a series of (+/-)-2,5-dimethoxy-4-(X)-phenylisopropylamines (X=I, Br, NO(2), CH(3), or H) and corresponding phenylethylamines, was determined in Xenopus laevis oocytes injected with cRNA coding for rat 5-HT(2A) or 5-HT(2C) receptors. The efficacy and relative potency of these drugs were determined and compared to classical(More)
To further characterize the nature of the regulatory metal-binding sites of the rat P2X(4) receptor, several transition heavy metals were tested to examine their ability to mimic the facilitator action of zinc or the inhibitory action of copper. cDNA coding for the rat P2X(4) receptor was injected into Xenopus laevis oocytes; the two-electrode voltage-clamp(More)
The P2X7 receptor is a non-selective cationic channel activated by extracellular ATP, belonging to the P2X receptor family. To assess the role of extracellular histidines on the allosteric modulation of the rat P2X7 receptor by divalent metals (copper, zinc and magnesium) and protons, these amino acid residues were singly substituted for corresponding(More)
There is considerable controversy about the molecular mechanisms responsible for the variations in innate immunity associated with age. While in vivo, aged animals and humans react to an inflammatory signal with an excessive production of pro-inflammatory cytokines, studies in vitro generally show that this response is attenuated in macrophages from old(More)
P2X receptor channels (P2XRs) are allosterically modulated by several compounds, mainly acting at the ectodomain of the receptor. Like copper, mercury, a metal that induces oxidative stress in cells, also stimulates the activity of P2X(2)R and inhibits the activity of P2X(4)R. However, the mercury modulation is not related to the extracellular residues(More)
Neisseria gonorrhoeae is a gram-negative diplococcus that in human beings produces gonorrhea. Much clinical evidence has led to the conclusion that gonococcus has important mechanisms to evade host immune functions; however, these mechanisms are only now beginning to be elucidated. In this study, we determined that the BALB/c mouse is a good animal model to(More)
Regulatory T cells (Treg) are important in the development of immune tolerance under normal physiological conditions. However, in pathological situations such as cancer, Treg increases have been correlated with bad prognoses. Treg depletion can be achieved in vitro under several stimuli, including the activation of the purinergic P2X7 receptor. Our aim was(More)
To further analyze the action of copper on brain synaptic mechanisms, the brain dipeptide carnosine (beta-alanyl-L-histidine) was tested in Xenopus laevis oocytes expressing the rat P2X4 or P2X7 receptors. Ten micromolar copper halved the currents evoked by ATP in both receptors; co-application of carnosine plus copper prevented the metal induced-inhibition(More)