Learn More
BACKGROUND Nuclear factor-kappaB (NF-kappaB) regulates genes involved in renal disease progression, such as the chemokines monocyte chemoattractant protein-1 (MCP-1) and RANTES. NF-kappaB is activated in experimental models of renal injury, and in vitro studies also suggest that proteinuria and angiotensin II could be important NF-kappaB activators. It has(More)
BACKGROUND The molecular mechanisms of renal injury in diabetic nephropathy (DN) are not completely understood, although inflammatory cells play a key role. The renin-angiotensin system (RAS) is involved in kidney damage; however, few studies have examined the localization of RAS components in human DN. Our aim was to investigate in renal biopsies the(More)
BACKGROUND Nuclear factor-kappaB (NF-kappaB) and activated protein-1 (AP-1) are transcription factors that regulate many genes involved in the progression of renal disease. Recent data have shown that NF-kappaB is activated in tubules and glomeruli in various experimental models of renal injury. In vitro studies also suggest that proteinuria could be an(More)
BACKGROUND The molecular mechanisms of renal injury and fibrosis in proteinuric nephropathies are not completely elucidated but the renin-angiotensin system (RAS) is involved. Idiopathic membranous nephropathy (MN), a proteinuric disease, may progress to renal failure. Our aim was to investigate the localization of RAS components in MN and their correlation(More)
Activation of Janus kinase/signal transducers and activators of transcription (JAK/STAT) is an important mechanism by which hyperglycemia contributes to renal damage, suggesting that modulation of this pathway may prevent renal and vascular complications of diabetes. Here, we investigated the involvement of suppressors of cytokine signaling (SOCS) as(More)
Cytochrome-P450 enzymes metabolize cyclosporine both in the liver and in the intestinal wall. Diltiazem, by competitive inhibition of these enzymes, may increase the absorption and the bioavailability of cyclosporine. Some evidence points to a higher activity of some specific enzymes in women, such as CYP3A, that may influence differences in cyclosporine(More)
BACKGROUND The area-under-the-curve (AUC) of cyclosporine (CsA) reflects exposure to the drug, but this monitoring strategy is time-consuming and not cost-effective. Recently, it has been suggested that the concentration at 2 hours after dosing (C2) shows the best correlation with AUC. The C2 has been replacing the trough measurement (C0) to monitor CsA(More)
BACKGROUND Chronic allograft nephropathy (CAN) is the most frequent cause of chronic dysfunction and late loss of renal allografts. Epithelial mesenchymal transition (EMT) has been identified as responsible for the presence of activated interstitial fibroblasts (myofibroblasts) and transforming growth factor beta (TGF-beta)/Smad is the key signaling(More)
Background. Nuclear factor-kB (NF-kB) regulates genes involved in renal disease progression, such as the chemokines monocyte chemoattractant protein-1 (MCP-1) and RANTES. NF-kB is activated in experimental models of renal injury, and in vitro studies also suggest that proteinuria and angiotensin II could be important NF-kB activators. It has been proposed(More)