Learn More
SOX2 is a key neurodevelopmental gene involved in maintaining the pluripotency of stem cells and proliferation of neural progenitors and astroglia. Two evolutionally conserved enhancers, SRR1 and SRR2, are involved in controlling SOX2 expression during neurodevelopment; however, the molecular mechanisms regulating their activity are not known. We have(More)
Insulin-like growth factor binding protein 7 (IGFBP7) is downregulated in several solid cancers. IGFBP7 has been proposed to act as a tumor suppressor gene through mechanisms involving senescence and apoptotic pathways. The tumor suppressor effect of IGFBP7 in glioblastoma multiforme (GBM) was examined in this study using two human GBM cell lines, U87MG and(More)
DNaseY, a Ca(2+)- and Mg(2+)-dependent endonuclease, has been implicated in apoptotic DNA degradation; however, the molecular mechanisms controlling its involvement in this process have not been fully elucidated. We have obtained evidence from yeast two-hybrid screening and coimmunoprecipitation experiments that DNaseY interacted physically with(More)
In this study, we have investigated the potential role of placental growth factor (PlGF) in hypoxia-induced brain angiogenesis. To this end, PlGF wild-type (PlGF(+/+)) and PlGF knockout (PlGF(-/-)) mice were exposed to whole body hypoxia (10% oxygen) for 7, 14, and 21 days. PlGF(+/+) animals exhibited a significant ~40% increase in angiogenesis after 7 days(More)
Angiogenesis, the sprouting of new capillaries from preexisting vessels, is an integral part of both normal development and numerous pathological conditions such as tumor growth, inflammation, and stroke. The development of angiogenesis assays has been critical in understanding this process in both the context of disease and normal physiology. With the(More)
DNA fragmentation in apoptosis, especially in lymphocytic cells, is initiated at scaffold/matrix attachment regions (S/MARs) and is preceded by the degradation of nuclear proteins. The present study was performed to establish whether the same mechanism occurred in human NT2 cells subjected to oxygen and glucose deprivation (OGD). We analyzed the integrity(More)
  • 1