Learn More
S100A8/A9 promotes NADPH oxidase in HaCaT keratinocytes and subsequently increases NFκB activation, which plays important roles in the balance between epidermal growth and differentiation. S100A8/A9-positive HaCaT cells present with a significantly reduced rate of cell division and greater expression of two keratinocyte differentiation markers, involucrin(More)
The Ca2+- and arachidonic acid-binding S100A8/A9 protein complex was recently identified by in vitro studies as a novel partner of the phagocyte NADPH oxidase. The present study demonstrated its functional relevance by the impaired oxidase activity in neutrophil-like NB4 cells, after specific blockage of S100A9 expression, and bone marrow polymorphonuclear(More)
BACKGROUND S100 proteins, a multigenic family of non-ubiquitous cytoplasmic Ca2+-binding proteins, have been linked to human pathologies in recent years. Dysregulated expression of S100 proteins, including S100A9, has been reported in the epidermis as a response to stress and in association with neoplastic disorders. Recently, we characterized a regulatory(More)
Analysis of the calcium-induced arachidonic acid (AA) binding to S100A8/A9 revealed that maximal AA binding was achieved at molar ratios of 1 mol S100A8 and 1 mol S100A9 and for values greater than 3 calciums per EF-hand. The AA binding capacity was not induced by the binding of other bivalent cations, such as Zn2+, Cu2+, and Mg2+, to the protein complex.(More)
The necrotrophic pathogen Gibberella pulicaris infects potato tubers through wounds that contain fungitoxic secondary metabolites such as the phytoalexins rishitin and lubimin. In order to colonize tuber tissue, the fungus must possess a mechanism to tolerate potato defense compounds. In this paper, we show that a gene, Gpabc1, that codes an ATP-binding(More)
Due to the low degree of sequence similarity it has been speculated that murine and human S100A9 (MRP14), an inflammatory marker protein belonging to the S100 protein family, may have different cellular functions in mouse and man. The present study was undertaken to investigate the murine S100A9 protein (mS100A9) biochemically. We demonstrate that in murine(More)
The calcium- and arachidonic acid (AA)-binding proteins S100A8 and S100A9 are involved in nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation in phagocytes. They are specifically expressed in myeloid cells, and are also found in epithelial cells in various (patho)physiological conditions. We have investigated the consequences of S100A8/A9(More)
Protein complexes formed by S100A8 and S100A9 represent the only AA-binding capacity in the human neutrophilic cytosol and are involved in the intracellular arachidonic acid metabolism. The formation of S100A8/A9 protein complexes and the binding of calcium to the complexes are prerequisites for the specific binding of polyunsaturated fatty acids. The(More)
  • 1