Learn More
Voltage-gated calcium channels (VGCCs) conduct calcium into cells after membrane depolarization and are vital for diverse biological events. They are regulated by various signalling pathways, which has profound functional consequences. The activity of VGCCs decreases with time in whole-cell and inside-out patch-clamp recordings. This rundown reflects(More)
Neuropathic pain results from damage to the peripheral sensory nervous system, which may have a number of causes. The calcium channel subunit alpha(2)delta-1 is upregulated in dorsal root ganglion (DRG) neurons in several animal models of neuropathic pain, and this is causally related to the onset of allodynia, in which a non-noxious stimulus becomes(More)
Voltage-gated calcium channels are thought to exist in the plasma membrane as heteromeric proteins, in which the alpha1 subunit is associated with two auxiliary subunits, the intracellular beta subunit and the alpha(2)delta subunit; both of these subunits influence the trafficking and properties of Ca(V)1 and Ca(V)2 channels. The alpha(2)delta subunits have(More)
BACKGROUND Descending facilitation, from the brainstem, promotes spinal neuronal hyperexcitability and behavioural hypersensitivity in many chronic pain states. We have previously demonstrated enhanced descending facilitation onto dorsal horn neurones in a neuropathic pain model, and shown this to enable the analgesic effectiveness of gabapentin. Here we(More)
Claudia S. Bauer,1 Manuela Nieto-Rostro,1 Wahida Rahman,1 Alexandra Tran-Van-Minh,1 Laurent Ferron,1 Leon Douglas,1 Ivan Kadurin,1 Yorain Sri Ranjan,1 Laura Fernandez-Alacid,2 Neil S. Millar,1 Anthony H. Dickenson,1 Rafael Lujan,2 and Annette C. Dolphin1 1Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT,(More)
The α2δ-1 protein is an auxiliary subunit of voltage-gated calcium channels, critical for neurotransmitter release. It is upregulated in dorsal root ganglion (DRG) neurons following sensory nerve injury, and is also the therapeutic target of the gabapentinoid drugs, which are efficacious in both experimental and human neuropathic pain conditions. α2δ-1 has(More)
In this study, we have examined the properties of synaptic transmission between dorsal root ganglion (DRG) and dorsal horn (DH) neurons, placed in co-culture. We also examined the effect of the anti-hyperalgesic gabapentinoid drug pregabalin (PGB) at this pharmacologically relevant synapse. The main method used was electrophysiological recording of(More)
Neuropathic pain is caused by lesion or dysfunction of the peripheral sensory nervous system. Up-regulation of the voltage-gated Ca(2+) channel subunit alpha(2)delta-1 in DRG (dorsal root ganglion) neurons and the spinal cord correlates with the onset of neuropathic pain symptoms such as allodynia in several animal models of neuropathic pain. The clinically(More)
BACKGROUND Opioid-induced hyperalgesia is recognized in the laboratory and the clinic, generating central hyperexcitability in the absence of peripheral pathology. We investigated pregabalin, indicated for neuropathic pain, and ondansetron, a drug that disrupts descending serotonergic processing in the central nervous system, on spinal neuronal(More)
The α2δ-1 subunit of voltage-gated calcium channels is upregulated after sensory nerve injury and is also the therapeutic target of gabapentinoid drugs. It is therefore likely to play a key role in the development of neuropathic pain. In this study, we have examined mice in which α2δ-1 gene expression is disrupted, to determine whether α2δ-1 is involved in(More)