Claudia Plant

Learn More
Subjects with mild cognitive impairment (MCI) have an increased risk to develop Alzheimer's disease (AD). Voxel-based MRI studies have demonstrated that widely distributed cortical and subcortical brain areas show atrophic changes in MCI, preceding the onset of AD-type dementia. Here we developed a novel data mining framework in combination with three(More)
During the last few years, GPUs have evolved from simple devices for the display signal preparation into powerful coprocessors that do not only support typical computer graphics tasks but can also be used for general numeric and symbolic computation tasks. As major advantage GPUs provide extremely high parallelism combined with a high bandwidth in memory(More)
Efficiently processing continuous k-nearest neighbor queries on data streams is important in many application domains, e. g. for network intrusion detection. Usually not all valid data objects from the stream can be kept in main memory. Therefore, most existing solutions are approximative. In this paper, we propose an efficient method for exact k-NN(More)
In high-dimensional feature spaces traditional clustering algorithms tend to break down in terms of efficiency and quality. Nevertheless, the data sets often contain clusters which are hidden in various subspaces of the original feature space. In this paper, we present a feature selection technique called SURFING (subspaces relevant for clustering) that(More)
The perception of pain is characterized by its tremendous intra- and interindividual variability. Different individuals perceive the very same painful event largely differently. Here, we aimed to predict the individual pain sensitivity from brain activity. We repeatedly applied identical painful stimuli to healthy human subjects and recorded brain activity(More)
In situations where class labels are known for a part of the objects, a cluster analysis respecting this information, i.e. semi-supervised clustering, can give insight into the class and cluster structure of a data set. Several semi-supervised clustering algorithms such as HMRF-K-Means [4], COP-K-Means [26] and the CCL-algorithm [18] have recently been(More)
The integrative mining of heterogeneous data and the interpretability of the data mining result are two of the most important challenges of today's data mining. It is commonly agreed in the community that, particularly in the research area of clustering, both challenges have not yet received the due attention. Only few approaches for clustering of objects(More)
Synchronization is a powerful and inherently hierarchical concept regulating a large variety of complex processes ranging from the metabolism in a cell to opinion formation in a group of individuals. Synchronization phenomena in nature have been widely investigated and models concisely describing the dynamical synchronization process have been proposed,(More)
How to automatically spot the major trends in large amounts of heterogeneous data? Clustering can help. However, most existing techniques suffer from one or more of the following drawbacks: 1) Many techniques support only one particular data type, most commonly numerical attributes. 2) Other techniques do not support attribute dependencies which are(More)