Claudia Mieko Mizutani

Learn More
The dorsoventral axis of the Drosophila embryo is patterned by a gradient of bone morphogenetic protein (BMP) ligands. In a process requiring at least three additional extracellular proteins, a broad domain of weak signaling forms and then abruptly sharpens into a narrow dorsal midline peak. Using experimental and computational approaches, we investigate(More)
Subdivision of the neuroectoderm into three rows of cells along the dorsal-ventral axis by neural identity genes is a highly conserved developmental process. While neural identity genes are expressed in remarkably similar patterns in vertebrates and invertebrates, previous work suggests that these patterns may be regulated by distinct upstream genetic(More)
Courtship is a widespread behavior in which one gender conveys to the other a series of cues about their species identity, gender, and suitability as mates. In many species, females decode these male displays and either accept or reject them. Despite the fact that courtship has been investigated for a long time, the genes and circuits that allow females to(More)
Several well-known morphogenetic gradients and cellular movements occur along the dorsal/ventral axis of the Drosophila embryo. However, the current techniques used to view such processes are somewhat limited. The following protocol describes a new technique for mounting fixed and labeled Drosophila embryos for coronal viewing with confocal imaging. This(More)
Morphogenetic gradients are essential to allocate cell fates in embryos of varying sizes within and across closely related species. We previously showed that the maternal NF-κB/Dorsal (Dl) gradient has acquired different shapes in Drosophila species, which result in unequally scaled germ layers along the dorso-ventral axis and the repositioning of the(More)
2 Summary The patterning of many developing tissues is orchestrated by gradients of morphogens. Included among the molecular events that drive the formation of morphogen gradients are a variety of elaborate regulatory interactions. It is widely thought that the purpose of such interactions is to make gradients robust—i.e. resistant to change in the face of(More)
  • 1