Learn More
Using antibodies and recombinant DNA techniques, we have identified plakophilin 2, a novel desmosomal plaque protein of M(r) 100,000 (estimated from SDS-PAGE), which is a member of the arm-repeat family of proteins and can occur in two splice forms (2a and 2b) because of the insertion of a 44 amino acid (aa)-encoding exon. In its aa sequence (837 and 881(More)
Plakophilin 2 (PKP2) is a widespread protein which shows a remarkable dual location: On the one hand, it appears as a constitutive karyoplasmic protein and on the other it is a desmosomal plaque component of most, probably all, desmosome-possessing tissues and cell culture lines. Here we report on its desmosomal occurrence as revealed by immunocytochemical(More)
We adapted UV CLIP (cross-linking immunoprecipitation) to accurately locate tens of thousands of m(6)A residues in mammalian mRNA with single-nucleotide resolution. More than 70% of these residues are present in the 3'-most (last) exons, with a very sharp rise (sixfold) within 150-400 nucleotides of the start of the last exon. Two-thirds of last exon m(6)A(More)
Plakophilin 2, a member of the arm-repeat protein family, is a dual location protein that occurs both in the cytoplasmic plaques of desmosomes as an architectural component and in an extractable form in the nucleoplasm. Here we report the existence of two nuclear particles containing plakophilin 2 and the largest subunit of RNA polymerase (pol) III(More)
Epigenetic alterations play an important role in carcinogenesis. Recent studies suggested that global histone modifications are predictors of cancer recurrence in various tumor entities. Our study was performed to evaluate histone H3 lysine 4 mono-methyl (H3K4me1), -di-methyl (H3K4me2) and -trimethyl (H3K4me3) patterns in renal cell carcinoma (RCC) using a(More)
Epigenetic alterations play an important role in carcinogenesis. Recent studies have suggested that global histone modifications are predictors of cancer recurrence in various tumor entities. Global histone acetylation levels (histone H3 lysine 9 acetylation [H3K9Ac], histone H3 lysine 18 acetylation [H3K18Ac], total histone H3 acetylation [H3Ac] and total(More)
We report experiments that infer a radical reorientation of tyrosine-phosphorylated parallel STAT1 dimers to an antiparallel form. Such a change in structure allows easy access to a phosphatase. With differentially epitope-tagged molecules, we show that the two monomers of a dimer remain together during dephosphorylation although they most likely undergo(More)
Plakophilin 1 and 2 (PKP1, PKP2) are members of the arm-repeat protein family. They are both constitutively expressed in most vertebrate cells, in two splice forms named a and b, and display a remarkable dual location: they occur in the nuclei of cells and, in epithelial cells, at the plasma membrane within the desmosomal plaques. We have shown by solid(More)
In biochemical and immunocytochemical comparisons of adhering junctions of different epithelia, we have observed differences in molecular composition not only between the intermediate filament-attached desmosomes and the actin filaments-anchoring adherens junctions but also between desmosomes of different tissues and of different strata in the same(More)
Signal transducers and activators of transcription (STATs) are latent cytoplasmic transcriptional factors that play an important role in cytokine and growth factor signaling. Here we report a 3.05 A-resolution crystal structure of an unphosphorylated STAT3 core fragment. The overall monomeric structure is very similar to that of the phosphorylated STAT3(More)