Claudia Buechel

Learn More
Fucoxanthin-chlorophyll proteins were purified from the centric diatom Cyclotella meneghiniana. Two major fractions were observed that differed in their polypeptide composition and oligomeric state. Trimers consist of mainly 18 kDa polypeptides. Higher oligomers are tightly assembled from different trimers, which contain mostly 19 kDa subunits. In both(More)
Two different fucoxanthin-chlorophyll protein complexes (FCP) were purified from the centric diatom Cyclotella meneghiniana and characterized with regard to their polypeptide and pigment composition. Whereas the oligomeric FCPb complex is most probably composed of fcp5 gene products, the trimeric FCPa has subunits encoded by fcp1-3 and fcp6/7. The amount of(More)
Diatoms are major contributors to the photosynthetic productivity of marine phytoplankton. In these organisms, fucoxanthin-chlorophyll proteins (FCPs) serve as light-harvesting proteins. We have explored the FCP complexes in Phaeodactylum tricornutum under low light (LL) and high light (HL) conditions. Sub-fractionating the pool of major FCPs yielded(More)
Fucoxanthin-chlorophyll complexes (FCP) from the centric diatom Cyclotella meneghiniana were isolated and the trimeric FCPa complex was reconstituted into liposomes at different lipid to Chl a ratios. The fluorescence yield of the complexes in different environments was calculated from room temperature fluorescence emission spectra and compared to the(More)
The biosynthesis pathway to diadinoxanthin and fucoxanthin was elucidated in Phaeodactylum tricornutum by a combined approach involving metabolite analysis identification of gene function. For the initial steps leading to β-carotene, putative genes were selected from the genomic database and the function of several of them identified by genetic pathway(More)
The fluorescence yield of isolated fucoxanthin chlorophyll proteins, serving as light harvesting proteins in diatoms, was compared to the amount of diatoxanthin bound. Diatoxanthin was earlier shown to be involved in the xanthophyll cycle in diatoms as a functional analogue of zeaxanthin in higher plants. By growing cells under different light conditions,(More)
A photosystem I (PSI)-fucoxanthin chlorophyll protein (FCP) complex with a chlorophyll a/P700 ratio of approximately 200:1 was isolated from the diatom Phaeodactylum tricornutum. Spectroscopic analysis proved that the more tightly bound FCP functions as a light-harvesting complex, actively transferring light energy from its accessory pigments chlorophyll c(More)
Efficient photosynthetic energy transduction and its regulation depend on a precise supramolecular arrangement of the plant photosystem II (PSII) complex in grana membranes of chloroplasts. The topography of isolated photosystem II supercomplexes and the supramolecular organization of this complex in grana membrane preparations are visualized by(More)
The blood-brain barrier (BBB) represents a considerable obstacle to brain entry of the majority of drugs and thus severely restricts the therapy of many serious CNS diseases including brain tumours, brain HIV, Alzheimer and other neurodegenerative diseases. The use of nanoparticles coated with polysorbate 80 or with attached apolipoprotein E has enabled the(More)