Claudia A. M. Wheeler-Kingshott

Learn More
Evidence concerning anatomical connectivities in the human brain is sparse and based largely on limited post-mortem observations. Diffusion tensor imaging has previously been used to define large white-matter tracts in the living human brain, but this technique has had limited success in tracing pathways into gray matter. Here we identified specific(More)
This paper introduces neurite orientation dispersion and density imaging (NODDI), a practical diffusion MRI technique for estimating the microstructural complexity of dendrites and axons in vivo on clinical MRI scanners. Such indices of neurites relate more directly to and provide more specific markers of brain tissue microstructure than standard indices(More)
Recent electrophysiological investigations of the auditory system in primates along with functional neuroimaging studies of auditory perception in humans have suggested there are two pathways arising from the primary auditory cortex. In the primate brain, a 'ventral' pathway is thought to project anteriorly from the primary auditory cortex to prefrontal(More)
PURPOSE To establish a general methodology for quantifying streamline-based diffusion fiber tracking methods in terms of probability of connection between points and/or regions. MATERIALS AND METHODS The commonly used streamline approach is adapted to exploit the uncertainty in the orientation of the principal direction of diffusion defined for each image(More)
Functional lateralization is a feature of human brain function, most apparent in the typical left-hemisphere specialization for language. A number of anatomical and imaging studies have examined whether structural asymmetries underlie this functional lateralization. We combined functional MRI (fMRI) and diffusion-weighted imaging (DWI) with tractography to(More)
A method is presented for determining paths of anatomical connection between regions of the brain using magnetic resonance diffusion tensor information. Level set theory, applied using fast marching methods, is used to generate three-dimensional time of arrival maps, from which connection paths between brain regions may be identified. The method is(More)
The aim of this study is to propose methods for assessing the reproducibility of diffusion tractography algorithms in future clinical studies and to show their application to the tractography algorithm developed in our unit, fast marching tractography (FMT). FMT estimates anatomical connectivity between brain regions using the information provided by(More)
The objective of this study was to define cortical and subcortical structures activated during both active and passive movements of the ankle, which have a fundamental role in the physiology of locomotion, to improve our understanding of brain sensorimotor integration. Sixteen healthy subjects, all right-foot dominant, performed a dorsi-plantar flexion task(More)
This study describes a new technique for Diffusion Tensor Imaging (DTI) that acquires axial (transverse) images of the cervical spinal cord. The DTI images depict axonal fiber orientation, enable quantification of diffusion characteristics along the spinal cord, and have the potential to demonstrate the connectivity of cord white matter tracts. Because of(More)
OBJECTIVE To quantitatively investigate water diffusion changes in normal-appearing white matter (NAWM) and gray matter in patients with MS, and to evaluate whether these changes are correlated with clinical disability and disease duration. BACKGROUND Diffusion tensor imaging provides quantitative information about the magnitude and directionality(More)