Claude Scarpelli

Learn More
The analysis of the first plant genomes provided unexpected evidence for genome duplication events in species that had previously been considered as true diploids on the basis of their genetics. These polyploidization events may have had important consequences in plant evolution, in particular for species radiation and adaptation and for the modulation of(More)
Tetraodon nigroviridis is a freshwater puffer fish with the smallest known vertebrate genome. Here, we report a draft genome sequence with long-range linkage and substantial anchoring to the 21 Tetraodon chromosomes. Genome analysis provides a greatly improved fish gene catalogue, including identifying key genes previously thought to be absent in fish.(More)
Identifying the mechanisms of eukaryotic genome evolution by comparative genomics is often complicated by the multiplicity of events that have taken place throughout the history of individual lineages, leaving only distorted and superimposed traces in the genome of each living organism. The hemiascomycete yeasts, with their compact genomes, similar(More)
The duplication of entire genomes has long been recognized as having great potential for evolutionary novelties, but the mechanisms underlying their resolution through gene loss are poorly understood. Here we show that in the unicellular eukaryote Paramecium tetraurelia, a ciliate, most of the nearly 40,000 genes arose through at least three successive(More)
Legumes (Fabaceae or Leguminosae) are unique among cultivated plants for their ability to carry out endosymbiotic nitrogen fixation with rhizobial bacteria, a process that takes place in a specialized structure known as the nodule. Legumes belong to one of the two main groups of eurosids, the Fabidae, which includes most species capable of endosymbiotic(More)
Magnifying Genomes (MaGe) is a microbial genome annotation system based on a relational database containing information on bacterial genomes, as well as a web interface to achieve genome annotation projects. Our system allows one to initiate the annotation of a genome at the early stage of the finishing phase. MaGe's main features are (i) integration of(More)
MicroScope is an integrated platform dedicated to both the methodical updating of microbial genome annotation and to comparative analysis. The resource provides data from completed and ongoing genome projects (automatic and expert annotations), together with data sources from post-genomic experiments (i.e. transcriptomics, mutant collections) allowing users(More)
To evaluate the existing annotation of the Arabidopsis genome further, we generated a collection of evolutionary conserved regions (ecores) between Arabidopsis and rice. The ecore analysis provides evidence that the gene catalog of Arabidopsis is not yet complete, and that a number of these annotations require re-examination. To improve the Arabidopsis(More)
Next generation technologies enable massive-scale cDNA sequencing (so-called RNA-Seq). Mainly because of the difficulty of aligning short reads on exon-exon junctions, no attempts have been made so far to use RNA-Seq for building gene models de novo, that is, in the absence of a set of known genes and/or splicing events. We present G-Mo.R-Se (Gene Modelling(More)
The initial outcome of genome sequencing is the creation of long text strings written in a four letter alphabet. The role of in silico sequence analysis is to assist biologists in the act of associating biological knowledge with these sequences, allowing investigators to make inferences and predictions that can be tested experimentally. A wide variety of(More)