Learn More
In T-cell precursors, the T-cell-receptor beta chain is expressed before the T-cell-receptor alpha chain and is sufficient to advance T-cell development in the absence of T-cell receptor alpha chains. In immature T cells, the T-cell-receptor beta protein can form disulphide-linked heterodimers with the pre-T-cell-receptor alpha chain and associate with(More)
Mechanisms of DNA repair and mutagenesis are defined on the basis of relatively few proteins acting on DNA, yet the identities and functions of all proteins required are unknown. Here, we identify the network that underlies mutagenic repair of DNA breaks in stressed Escherichia coli and define functions for much of it. Using a comprehensive screen, we(More)
The T cell antigen receptor (TCR) beta chain regulates early T cell development in the absence of the TCR alpha chain. The developmentally controlled gene described here encodes the pre-TCR alpha (pT alpha) chain, which covalently associates with TCR beta and with the CD3 proteins forms a pre-TCR complex that transduces signals in immature thymocytes.(More)
The evolutionary success of bacteria depends greatly on their capacity to continually generate phenotypic diversity. Structured environments are particularly favorable for diversification because of attenuated clonal interference, which renders selective sweeps nearly impossible and enhances opportunities for adaptive radiation. We examined at the(More)
The role of the pre-T cell receptor (TCR) in lineage commitment to the gammadelta versus alphabeta lineage of T cells was addressed by analyzing TCRbeta chain rearrangements in gammadelta T cells from wild-type and pre-TCR-deficient mice by single cell polymerase chain reaction. Results show that the pre-TCR selects against gammadelta T cells containing(More)
The construction of various gene-deficient mice has facilitated the understanding of the role of various receptors and signaling pathways that control the generation of alphabeta lineage cells. A predominant role is occupied by the pre-TCR, which not only generates large numbers of alphabeta lineage cells but also controls TCRbeta allelic exclusion as well(More)
Although polymicrobial infections, caused by combinations of viruses, bacteria, fungi and parasites, are being recognised with increasing frequency, little is known about the occurrence of within-species diversity in bacterial infections and the molecular and evolutionary bases of this diversity. We used multiple approaches to study the genomic and(More)
The analysis of T-cell receptor (TCR) beta selection, TCR beta allelic exclusion and TCR beta rearrangement in gamma delta T cells from normal and pre-TCR-deficient mice has shown that the pre-TCR has a crucial role in T-lymphocyte development: The pre-TCR is by far the most effective receptor that generates large numbers of CD4+8+ T cells with productive(More)
Lineage choice is of great interest in developmental biology. In the immune system, the alphabeta and gammadelta lineages of T lymphocytes diverge during the course of the beta-, gamma- and delta-chain rearrangement of T-cell receptor (TCR) genes that takes place within the same precursor cell and which results in the formation of the gammadeltaTCR or(More)
Through their life cycles, bacteria experience many different environments in which the relationship between available energy resources and the frequency and the nature of various stresses is highly variable. In order to survive in such changeable environments, bacteria must balance the need for nutritional competence with stress resistance. In Escherichia(More)