Learn More
Three-dimensional (3D) culture systems are critical to investigate cell physiology and to engineer tissue grafts. In this study, we describe a simple yet innovative bioreactor-based approach to seed, expand, and differentiate bone marrow stromal cells (BMSCs) directly in a 3D environment, bypassing the conventional process of monolayer (two-dimensional(More)
Between January 1996 and December 2001, 72 out of 354 patients were included in a retrospective study analysing the outcome of repaired orbital wall defects. Selection was dependent on the availability of pre and postoperative CT scans and on ophthalmologic examination. In particular, orthoptical assessment was performed up to 1 year after operation. In 72(More)
Biological substitutes for autologous bone flaps could be generated by combining flap pre-fabrication and bone tissue engineering concepts. Here, we investigated the pattern of neotissue formation within large pre-fabricated engineered bone flaps in rabbits. Bone marrow stromal cells from 12 New Zealand White rabbits were expanded and uniformly seeded in(More)
Mineralized and partially or fully demineralized biomaterials derived from bovine bone matrix were evaluated for their ability to support human bone marrow stromal cell (BMSC) osteogenic differentiation in vitro and bone-forming capacity in vivo in order to assess their potential use in clinical tissue-engineering strategies. BMSCs were either seeded on(More)
In this study, we aimed at generating osteogenic and vasculogenic constructs starting from the stromal vascular fraction (SVF) of human adipose tissue as a single cell source. SVF cells from human lipoaspirates were seeded and cultured for 5 days in porous hydroxyapatite scaffolds by alternate perfusion through the scaffold pores, eliminating standard(More)
Bisphosphonates are well known potent inhibitors of osteoclast activity and are widely used to treat metabolic bone diseases. Recent evidence from in vitro and in vivo studies indicates that bisphosphonates may additionally promote osteoblastic bone formation. In this study, we evaluated the effects of three FDA-approved and clinically utilized(More)
The fibular flap can be used for a variety of indications. Recently, the treatment of four patients with severely atrophied upper jaws using a method to prefabricate the vascularized fibular graft has been published. This technique consists of a two-stage operation procedure that allows simultaneous prosthodontic rehabilitation and immediate placement of(More)
BACKGROUND Bone tissue formation by bone marrow stromal cells may be supported and enhanced by multiple growth factors, particularly in cases of a compromised local microenvironment. In this study, the authors hypothesized that fibroblast growth factor (FGF)-2 can stimulate the production by human bone marrow stromal cells of osteogenic [i.e., bone(More)
In this work, we investigated whether osteoinductive constructs can be generated by isolation and expansion of sheep bone marrow stromal cells (BMSC) directly within three-dimensional (3D) ceramic scaffolds, bypassing the typical phase of monolayer (2D) expansion prior to scaffold loading. Nucleated cells from sheep bone marrow aspirate were seeded into 3D(More)