Clark A. Meyer

Learn More
A stent is a device designed to restore flow through constricted arteries. These tubular scaffold devices are delivered to the afflicted region and deployed using minimally invasive techniques. Stents must have sufficient radial strength to prop the diseased artery open. The presence of a stent can subject the artery to abnormally high stresses that can(More)
A new experimental setup has been implemented to precisely measure the deformations of an entire model abdominal aortic aneurysm (AAA). This setup addresses a gap between the computational and experimental models of AAA that have aimed at improving the limited understanding of aneurysm development and rupture. The experimental validation of the deformations(More)
An in vitro dynamics set-up of the flow in a compliant abdominal aortic aneurysm (AAA) model with an anterior posterior asymmetry, aorto-iliac bifurcation, and physiological inlet flow rate and outlet pressure waveforms was developed. The aims were first to show that the structural mechanical behavior of the used material to mimic the AAA wall was similar(More)
The biomechanical interaction of stents and the arteries into which they are deployed is a potentially important consideration for long-term success. Adverse arterial reactions to excessive stress and the resulting damage have been linked to the development of restenosis. Complex geometric features often encountered in these procedures can confound(More)
The deployment of a vascular stent aims to increase lumen diameter for the restoration of blood flow, but the accompanied alterations in the mechanical environment possibly affect the long-term patency of these devices. The primary aim of this investigation was to develop an algorithm to optimize stent design, allowing for consideration of competing solid(More)
PURPOSE To examine the solid mechanical effects of varying stent design and atherosclerotic plaque stiffness on the biomechanical environment induced in a diseased artery wall model. METHODS Computational modeling techniques were employed to investigate the final radius of the lumen and artery wall stresses after stent implantation. Two stent designs were(More)
How much and how the thrombus supports the wall of an abdominal aortic aneurysm (AAA) is unclear. While some previous studies have indicated that thrombus lacks the mechanical integrity to support much load compared with the aneurysm wall, others have shown that removing thrombus in computational AAA models drastically changes aneurysm wall stress.(More)
A coupled agent-based model (ABM) and finite element analysis (FEA) computational framework is developed to study the interplay of bio-chemo-mechanical factors in blood vessels and their role in maintaining homeostasis. The agent-based model implements the power of REPAST Simphony libraries and adapts its environment for biological simulations. Coupling a(More)
  • 1