Clarissa S. Sit

Learn More
The last decade has seen numerous outbreaks of Clostridium difficile-associated disease (CDAD), which presented significant challenges for healthcare facilities worldwide. We have identified and purified thuricin CD, a two-component antimicrobial that shows activity against C. difficile in the nanomolar range. Thuricin CD is produced by Bacillus(More)
Languishing antibiotic discovery and flourishing antibiotic resistance have prompted the development of alternative untapped sources for antibiotic discovery, including previously uncultured bacteria. Here, we screen extracts from uncultured species against Mycobacterium tuberculosis and identify lassomycin, an antibiotic that exhibits potent bactericidal(More)
The coupling of succinate oxidation to the reduction of ubiquinone by succinate dehydrogenase (SDH) constitutes a pivotal reaction in the aerobic generation of energy. In Saccharomyces cerevisiae, SDH is a tetramer composed of a catalytic dimer comprising a flavoprotein subunit, Sdh1p and an iron-sulfur protein, Sdh2p and a heme b-containing(More)
Amicoumacin A exhibits strong antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA), hence we sought to uncover its mechanism of action. Genome-wide transcriptome analysis of S. aureus COL in response to amicoumacin A showed alteration in transcription of genes specifying several cellular processes including cell envelope(More)
Thuricin CD is an antimicrobial factor that consists of two peptides, Trn-α and Trn-β, that exhibit synergistic activity against drug resistant strains of Clostridium difficile. Trn-α and Trn-β each possess three sulfur to α-carbon thioether bridges for which the stereochemistry is unknown. This report presents the three-dimensional solution structures of(More)
Bacillus circulans NRRL B-30644 (now Paenibacillus terrae) was previously reported to produce SRCAM 1580, a bacteriocin active against the food pathogen Campylobacter jejuni. We have been unable to isolate SRCAM 1580, and did not find any genetic determinants in the genome of this strain. We now report the reassignment of this activity to the lipopeptide(More)
Bacillus subtilis produces an anionic bacteriocin called subtilosin A that possesses antibacterial activity against certain gram-positive bacteria. In this study, we uncovered a hemolytic mutant of B. subtilis that produces an altered form of subtilosin A. The mutant bacteriocin, named subtilosin A1, has a replacement of threonine at position 6 with(More)
Bacteria produce a wide array of metabolites to protect themselves from competing microbes. These antimicrobial compounds include peptides with an S-[(Z)-2-aminovinyl]-d-cysteine (AviCys) or S-[(Z)-2-aminovinyl]-(3S)-3-methyl-d-cysteine (AviMeCys) residue, which have been isolated from several different bacterial species. The peptides are structurally(More)
The development of antibiotic resistance in pathogenic bacteria has led to a search for novel classes of antimicrobial drugs. Bacteriocins are peptides that are naturally produced by bacteria and have considerable potential to fulfill the need for more effective bacteriocidal agents. In this mini-review, we describe research aimed at generating analogues of(More)