Learn More
Two maize plastidic NADP-malic enzyme isoforms have been characterized: the bundle sheath-located photosynthetic isoform (ZmC4-NADP-ME) and a constitutively expressed one (Zm-nonC4-NADP-ME). In this work, the characterization of the first maize cytosolic NADP-ME (ZmCytNADP-ME) is presented, which transcript is exclusively found in embryo and emerging roots.(More)
Two highly similar plastidic NADP-malic enzymes (NADP-MEs) are found in the C(4) species maize (Zea mays); one exclusively expressed in the bundle sheath cells (BSCs) and involved in C(4) photosynthesis (ZmC(4)-NADP-ME); and the other (ZmnonC(4)-NADP-ME) with housekeeping roles. In the present work, these two NADP-MEs were analyzed regarding their(More)
C(4) photosynthetic NADP-malic enzyme (ME) has evolved from non-C(4) isoforms and gained unique kinetic and structural properties during this process. To identify the domains responsible for the structural and kinetic differences between maize C(4) and non-C(4)-NADP-ME several chimeras between these isoforms were constructed and analyzed. By using this(More)
Malic enzyme is present in many plant cell compartments such as plastids, cytosol and mitochondria. Particularly relevant is the plastidial isoform that participates in the C(4) cycle providing CO(2) to RuBisCO in C(4) species. This type of photosynthesis is more frequent among grasses where anatomical preconditioning would have facilitated the evolution of(More)
NADP-malic enzyme (NADP-ME) is involved in different metabolic pathways in several organisms due to the relevant physiological functions of the substrates and products of its reaction. In plants, it is one of the most important proteins that were recruited to fulfil key roles in C4 photosynthesis. Recent advances in genomics allowed the characterization of(More)
Phytoplasmas ('Candidatus Phytoplasma') are insect-vectored plant pathogens. The genomes of these bacteria are small with limited metabolic capacities making them dependent on their plant and insect hosts for survival. In contrast to mycoplasmas and other relatives in the class Mollicutes, phytoplasmas encode genes for malate transporters and malic enzyme(More)
C4 photosynthesis enables the capture of atmospheric CO2 and its concentration at the site of RuBisCO, thus counteracting the negative effects of low atmospheric levels of CO2 and high atmospheric levels of O2 (21 %) on photosynthesis. The evolution of this complex syndrome was a multistep process. It did not occur by simply recruiting pre-exiting(More)
  • 1