Clare M. Waterman-Storer

Learn More
Cell migration initiates by extension of the actin cytoskeleton at the leading edge. Computational analysis of fluorescent speckle microscopy movies of migrating epithelial cells revealed this process is mediated by two spatially colocalized but kinematically, kinetically, molecularly, and functionally distinct actin networks. A lamellipodium network(More)
BACKGROUND The microtubule-dependent motility of endoplasmic reticulum (ER) tubules is fundamental to the structure and function of the ER. From in vitro assays, three mechanisms for ER tubule motility have arisen: the 'membrane sliding mechanism' in which ER tubules slide along microtubules using microtubule motor activity; the 'microtubule movement(More)
We have discovered several novel features exhibited by microtubules (MTs) in migrating newt lung epithelial cells by time-lapse imaging of fluorescently labeled, microinjected tubulin. These cells exhibit leading edge ruffling and retrograde flow in the lamella and lamellipodia. The plus ends of lamella MTs persist in growth perpendicular to the leading(More)
Fluorescence microscopic visualization of fluorophore-conjugated proteins that have been microinjected or expressed in living cells and have incorporated into cellular structures has yielded much information about protein localization and dynamics [1]. This approach has, however, been limited by high background fluorescence and the difficulty of detecting(More)
Cell migration requires the transmission of motion generated in the actin cytoskeleton to the extracellular environment through a complex assembly of proteins in focal adhesions. We developed correlational fluorescent speckle microscopy to measure the coupling of focal-adhesion proteins to actin filaments. Different classes of focal-adhesion structural and(More)
The distribution and dynamics of the membranous organelles in two cell types were investigated during cell division. Live cells (either PtK2 or LLC-PK1) labeled with the vital dye 3,3'-dihexyloxacarbocyanine iodide [DiOC6(3)] were observed via serial optical sectioning with the laser-scanning confocal microscope. Z-series of labeled, dividing cells were(More)
Cells exhibit a biphasic migration-velocity response to increasing adhesion strength, with fast migration occurring at intermediate extracellular matrix (ECM) concentration and slow migration occurring at low and high ECM concentration. A simple mechanical model has been proposed to explain this observation, in which too little adhesion does not provide(More)
Migrating cells display a characteristic polarization of the actin cytoskeleton. Actin filaments polymerise in the protruding front of the cell whereas actin filament bundles contract in the cell body, which results in retraction of the cell's rear. The dynamic organization of the actin cytoskeleton provides the force for cell motility and is regulated by(More)
Fluorescent speckle microscopy (FSM) is becoming the technique of choice for analyzing in vivo the dynamics of polymer assemblies, such as the cytoskeleton. The massive amount of data produced by this method calls for computational approaches to recover the quantities of interest; namely, the polymerization and depolymerization activities and the motions(More)
Proteins that in cells specifically bind to growing microtubule plus ends (+TIPs) are thought to play important roles in polarization of the cytoskeleton. However, most +TIPs do not show a bias of their microtubule-binding behavior toward different subcellular regions. Here, we examine the dynamics of the +TIP CLASP in migrating PtK1 epithelial cells. We(More)