Learn More
Disturbance of calcium homeostasis and accumulation of misfolded proteins in the endoplasmic reticulum (ER) are considered contributory components of cell death after ischemia. However, the signal-transducing events that are activated by ER stress after cerebral ischemia are incompletely understood. In this study, we show that caspase-12 and the PERK and(More)
The mechanisms of injury-induced apoptosis of neurons within the spinal cord are poorly understood. In this study, we show that spinal cord injury (SCI) induces endoplasmic reticulum stress revealed by the activation of an unbalanced unfolded protein response (UPR). Using a weight-drop contusion model of SCI, the UPR activation was characterized by a quick(More)
Disconnection of the axon from the soma of spinal motoneurons (MNs) leads either to a retrograde degenerative process or to a regenerative reaction, depending on the severity and the proximity to the soma of the axonal lesion. The endoplasmic reticulum (ER) is a continuous membranous network that extends from the nucleus to the entire cytoplasm of the(More)
Spinal cord injury (SCI) is a major cause of disability to which there are not yet effective treatments. We previously reported that degeneration of oligodendrocytes and neurons that occurs after SCI is associated with the development of endoplasmic reticulum (ER) stress and the progressive accumulation of the pro-apoptotic factor CHOP. Since following ER(More)
BACKGROUND Amyotrophic lateral sclerosis (ALS) is one of the most devastating neurodegenerative diseases. Neurotrophic factors have been widely tested to counteract neurodegenerative conditions, despite their unspecific neuronal access. The non-toxic C-terminal fragment of the tetanus toxin (TTC) heavy chain has been studied not only as a carrier molecule(More)
Epigenetic proteins have recently emerged as novel anticancer targets. Among these, bromodomain and extra terminal domain (BET) proteins recognize lysine-acetylated histones, thereby regulating gene expression. Newly described small molecules that inhibit BET proteins BRD2, BRD3, and BRD4 reduce proliferation of NUT (nuclear protein in testis)-midline(More)
Compelling evidence shows that after root avulsion motoneurons attempt to survive and regenerate before dying. In order to study these mechanisms, unilateral avulsion of L4-L5 spinal roots was performed in adult rats, and the ventral spinal cords were studied from 3 to 28 days post-operation (dpo). Electrophysiological results indicated complete denervation(More)
Spinal root avulsion leads to a progressive loss of axotomized motoneurons (MNs). Nowadays, there is no effective treatment to prolong MN survival that could permit recovery as a result of delayed surgical repair. Administration of Sigma-1 receptor (Sig-1R) ligands has been reported to promote beneficial effects after several types of neural injury. In(More)
Glioblastoma multiforme (GBM) is the most common malignant adult brain tumor. Standard GBM treatment includes maximal safe surgical resection with combination radiotherapy and adjuvant temozolomide (TMZ) chemotherapy. Alarmingly, patient survival at five-years is below 10%. This is in part due to the invasive behavior of the tumor and the resulting(More)
Although casein kinase 1δ (CK1δ) is at the center of multiple signaling pathways, its role in the expansion of CNS progenitor cells is unknown. Using mouse cerebellar granule cell progenitors (GCPs) as a model for brain neurogenesis, we demonstrate that the loss of CK1δ or treatment of GCPs with a highly selective small molecule inhibits GCP expansion. In(More)