Learn More
We study problems that arise in the context of covering certain geometric objects (so-called seeds, e.g., points or disks) by a set of other geometric objects (a so-called cover, e.g., a set of disks or homo-thetic triangles). We insist that the interiors of the seeds and the cover elements are pairwise disjoint, but they can touch. We call the contact(More)
The problem of computing a representation of the stabbing lines of a set S of segments in the plane was solved by Edelsbrunner et al. We provide efficient algorithms for the following problems: computing the stabbing wedges for S, finding a stabbing wedge for a set of parallel segments with equal length, and computing other stabbers for S such as a(More)
The dilation-free graph of a planar point set S is a graph that spans S in such a way that the distance between two points in the graph is no longer than their planar distance. Metrically speaking, those graphs are equivalent to complete graphs; however they have far fewer edges when considering the Manhattan distance (we give here an upper bound on the(More)