Claire W. Hallahan

Learn More
Plasmacytoid dendritic cells (pDCs) are important mediators of innate immunity that act mainly through secretion of interferon (IFN)-alpha. Previous studies have found that these cells can suppress HIV in vitro; additionally, pDCs have been shown to be severely reduced in the peripheral blood of HIV-infected individuals. In the present study, we sought to(More)
If future HIV vaccine design strategies are to succeed, improved understanding of the mechanisms underlying protection from infection or immune control over HIV replication remains essential. Increased cytotoxic capacity of HIV-specific CD8+ T-cells associated with efficient elimination of HIV-infected CD4+ T-cell targets has been shown to distinguish(More)
Although the study of non-human primates has resulted in important advances for understanding HIV-specific immunity, a clear correlate of immune control over simian immunodeficiency virus (SIV) replication has not been found to date. In this study, CD8(+) T-cell cytotoxic capacity was examined to determine whether this function is a correlate of immune(More)
BACKGROUND Short cycle treatment interruption could reduce toxicity and drug costs and contribute to further expansion of antiretroviral therapy (ART) programs. METHODS A 72 week, non-inferiority trial enrolled one hundred forty six HIV positive persons receiving ART (CD4+ cell count > or =125 cells/mm(3) and HIV RNA plasma levels <50 copies/ml) in one of(More)
Understanding natural immunologic control over Human Immunodeficiency Virus (HIV)-1 replication, as occurs in rare long-term nonprogressors/elite controllers (LTNP/EC), should inform the design of efficacious HIV vaccines and immunotherapies. Durable control in LTNP/EC is likely mediated by highly functional virus-specific CD8(+) T-cells. Protective Human(More)
  • 1