Claire Vigor

Learn More
Isoprostanoids are a group of non-enzymatic oxygenated metabolites of polyunsaturated fatty acids. It belongs to oxylipins group, which are important lipid mediators in biological processes, such as tissue repair, blood clotting, blood vessel permeability, inflammation and immunity regulation. Recently, isoprostanoids from eicosapentaenoic, docosahexaenoic,(More)
This study aims to evaluate and compare the antiproliferative and proapoptotic effects of resveratrol (trans-3,4',5-trihydoxystilbene) with two of its naturally occurring oligomers, epsilon-viniferin (a dimer) and miyabenol C (a trimer). Proliferation assays performed on myeloid and lymphoid cell lines show that the three compounds inhibit cell growth of(More)
Metabolites of non-enzymatic lipid peroxidation of polyunsaturated fatty acids notably omega-3 and omega-6 fatty acids have become important biomarkers of lipid products. Especially the arachidonic acid-derived F2-isoprostanes are the classic in vivo biomarker for oxidative stress in biological systems. In recent years other isoprostanes from(More)
Oxygenated lipid mediators released from non-enzymatic peroxidation of polyunsaturated fatty acids (PUFA) are known to have functional roles in humans. Notably, among these lipid mediators, isoprostanes molecules are robust biomarkers of oxidative stress but those from n-3 PUFA are also bioactive molecules. In order to identify and assess the isoprostanes,(More)
The extreme temperatures generated in the melon crop, early harvest, induce an increase in reactive oxygen species (ROS) plant levels leading to oxidative stress. Phytoprostanes (PhytoPs) and phytofurans (PhytoFs) are plant metabolites derived from α-linolenic acid oxidation induced by ROS. The aims of this work were to evaluate PhytoPs and PhytoFs as(More)
Among retinal macular diseases, the juvenile recessive Stargardt disease and the age-related degenerative disease arise from carbonyl and oxidative stresses (COS). Both stresses originate from an accumulation of all-trans-retinal (atRAL) and are involved in bisretinoid formation by condensation of atRAL with phosphatidylethanolamine (carbonyl stress) in the(More)
  • 1