Claire Pellot-Barakat

Learn More
Elasticity imaging is based on the measurements of local tissue deformation. The approach to ultrasound elasticity imaging presented in this paper relies on the estimation of dense displacement fields by a coarse-to-fine minimization of an energy function that combines constraints of conservation of echo amplitude and displacement field continuity. The(More)
Imaging systems are most effective for detection and classification when they exploit contrast mechanisms specific to particular disease processes. A common example is mammography, where the contrast depends on local changes in cell density and the presence of microcalcifications. Unfortunately the specificity for classifying malignant breast disease is(More)
A three-dimensional (3D) reconstruction of the vessel lumen from two angiographic views, based on the reconstruction of a series of cross-sections, is proposed. Assuming uniform mixing of contrast medium and background subtraction, the cross-section of each vessel is reconstructed through a binary representation. A priori information about both the slice to(More)
Ultrasonic elasticity imaging is a promising new tool for breast cancer diagnosis and management. Ultrasound is applied to sense small local tissue deformations noninvasively to image stiffness and thus exploit the large intrinsic stiffness contrast generated during the progression of many diseases in vivo. This paper briefly reviews several related(More)
The strain values extracted from steady-state free-precession (SSFP) and phase contrast (PC) images acquired with a 1.5T scanner on a compliant flow phantom and within the thoracic aorta of 52 healthy subjects were compared. Aortic data were acquired perpendicular to the aorta at the level of the pulmonary artery bifurcation. Cross sectional areas were(More)
This paper describes a motion detection method specific to hybrid positron emission tomography/single photon emission computed tomography systems. The method relies on temporal fractionation of the acquisition into three data sets followed by an algorithm based on the cross correlation (CC) of partial sinograms from successive sets at different rotations of(More)
Automated extraction of quantitative parameters from cardiac magnetic resonance images is crucial for the management of patients with myocardial infarct. This paper proposes a postprocessing procedure to jointly analyze Cine and delayed-enhanced (DE) acquisitions, in order to provide an automatic quantification of myocardial contraction and enhancement(More)