Claire M. Ellison

Learn More
The aim of this work was to develop a high-quality 1-octanol/water partition coefficient-dependent (log P) baseline quantitative structure-activity relationship (QSAR) for the toxicity (log IGC(50)(-1)) of classic non-polar narcotics to Tetrahymena pyriformis, and subsequently use this model to define the domain of applicability for baseline narcosis. The(More)
It has been estimated that reproductive and developmental toxicity tests will account for a significant proportion of the testing costs associated with REACH compliance. Consequently, the use of alternative methods to predict developmental toxicity is an attractive prospect. The present study evaluates a number of computational models and tools which can be(More)
INTRODUCTION Drug toxicity pathways can be extremely complex and difficult to fully understand. However, understanding specific parts of the pathway may be simpler. Every toxicity pathway starts with a molecular initiating event (MIE). If an MIE is well understood then it becomes possible to predict which compounds can partake in that particular MIE using(More)
Several pieces of legislation have led to an increased interest in the use of in silico methods, specifically the formation of chemical categories for the assessment of toxicological endpoints. For a number of endpoints, this requires a detailed knowledge of the electrophilic reaction chemistry that governs the ability of an exogenous chemical to form a(More)
An important molecular initiating event for genotoxicity is the ability of a compound to bind covalently with DNA. However, not all compounds that can undergo covalent binding mechanisms will result in genotoxicity. One approach to solving this problem, when in silico prediction techniques are being used, is to develop tools that allow chemicals to be(More)
The applicability domain of a (quantitative) structure-activity relationship ([Q]SAR) must be defined, if a model is to be used successfully for toxicity prediction, particularly for regulatory purposes. Previous efforts to set guidelines on the definition of applicability domains have often been biased toward quantitative, rather than qualitative, models.(More)
Patients with multiple sclerosis (MS) have been shown to have a measurable deterioration in the ability to perceive temporal variations of light. Compared to the traditional critical flicker fusion (CFF) measure, a modified flicker fusion test showed an improved sensitivity for denoting neurological deficit in temporal vision. One hundred twenty-two(More)
It is important that in silico models for use in chemical safety legislation, such as REACH, are compliant with the OECD Principles for the Validation of (Q)SARs. Structural alert models can be useful under these circumstances but lack an adequately defined applicability domain. This paper examines several methods of domain definition for structural alert(More)
Integrated testing strategies are an important and useful approach to reduce animal usage in toxicity testing. Increased usage of integrated testing strategies is foreseen in current chemical legislation, e.g. REACH. Skin sensitisation is a well studied endpoint and many in silico models have been developed for the prediction of the skin sensitising(More)
Assessment of the potential of compounds to cause harm to the aquatic environment is an integral part of the REACH legislation. To reduce the number of vertebrate and invertebrate animals required for this analysis alternative approaches have been promoted. Category formation and read-across have been applied widely to predict toxicity. A key approach to(More)