Claire Lemaire

Learn More
Oxa1p is a key component of the general membrane insertion machinery of eukaryotic respiratory complex subunits encoded by the mitochondrial genome. In this study, we have generated a respiratory-deficient mutant, oxa1-E65G-F229S, that contains two substitutions in the predicted intermembrane space domain of Oxa1p. The respiratory deficiency due to this(More)
Oxa1p is a mitochondrial inner membrane protein that is mainly required for the insertion/assembly of complex IV and ATP synthase and is functionally conserved in yeasts, humans, and plants. We have isolated several independent suppressors that compensate for the absence of Oxa1p. Molecular cloning and sequencing reveal that the suppressor mutations (CYT1-1(More)
In eukaryotic cells, the mitochondrion is the key organelle for cellular respiration. Mitochondrial proteome analysis is difficult to perform by the classical proteomic approach involving two-dimensional gel electrophoresis (2DE), because this organelle contains a large number of membrane-associated and highly alkaline proteins usually requiring specific(More)
This paper proposes a method for extracting translations of morphologically constructed terms from comparable corpora. The method is based on compositional translation and exploits translation equivalences at the morpheme-level, which allows for the generation of " fertile " translations (translation pairs in which the target term has more words than the(More)
This paper defines a method for lexicon in the biomedical domain from comparable corpora. The method is based on compositional translation and exploits morpheme-level translation equivalences. It can generate translations for a large variety of morphologically constructed words and can also generate 'fertile' translations. We show that fertile translations(More)
  • 1