Claire Lemaire

Learn More
The nuclear gene OXA1 encodes a protein located within the mitochondrial inner membrane that is required for the biogenesis of both cytochrome c oxidase (Cox) and ATPase. In the absence of Oxa1p, the translocation of the mitochondrially encoded subunit Cox2p to the intermembrane space (also referred to as export) is prevented, and it has been proposed that(More)
We present here the properties of a complex III loss-of-function mutant of the filamentous fungus Podospora anserina. The mutation corresponds to a single substitution in the second intron of the gene cyc1 encoding cytochrome c(1), leading to a splicing defect. The cyc1-1 mutant is long-lived, exhibits a defect in ascospore pigmentation, has a reduced(More)
We have characterized the subunit composition of the chloroplast ATP synthase from Chlamydomonas reinhardtii by means of a comparison of the polypeptide deficiencies in a mutant defective in photophosphorylation, with the polypeptide content in purified coupling factor (CF)1 and CF1.CF0 complexes. We could distinguish nine subunits in the enzyme, four of(More)
Duchenne muscular dystrophy (DMD) is an X-linked recessive genetic disorder for which the biochemical defect is as yet unknown. Recently, two cloned segments of human X-chromosome DNA have been described which detect structural alterations within or near the genetic locus responsible for the disorder. Both of these cloned segments were described as tightly(More)
We have carried out an analysis of the synthesis, cellular accumulation, and membrane binding of the chloroplast-encoded subunits of the ATP synthase (alpha, beta, epsilon, I, III, and IV) in several mutants of Chlamydomonas reinhardtii defective in photophosphorylation. These data gave some insight on the putative genetic lesion in each mutant and allowed(More)
Using site-directed mutagenesis, we previously identified some residues that probably belong to the site by which Erabutoxin a (Ea), a sea snake toxin, recognizes the nicotinic acetylcholine receptor (AcChoR) (Pillet, L., Trémeau, O., Ducancel, F. Drevet, P., Zinn-Justin, S., Pinkasfeld, S., Boulain, J.-C., and Ménez, A. (1993) J. Biol. Chem. 268, 909-916).(More)
Oxa1p is a mitochondrial inner membrane protein that is mainly required for the insertion/assembly of complex IV and ATP synthase and is functionally conserved in yeasts, humans, and plants. We have isolated several independent suppressors that compensate for the absence of Oxa1p. Molecular cloning and sequencing reveal that the suppressor mutations (CYT1-1(More)
Oxa1p is a key component of the general membrane insertion machinery of eukaryotic respiratory complex subunits encoded by the mitochondrial genome. In this study, we have generated a respiratory-deficient mutant, oxa1-E65G-F229S, that contains two substitutions in the predicted intermembrane space domain of Oxa1p. The respiratory deficiency due to this(More)
This paper proposes a method for extracting translations of morphologically constructed terms from comparable corpora. The method is based on compositional translation and exploits translation equivalences at the morpheme-level, which allows for the generation of “fertile” translations (translation pairs in which the target term has more words than the(More)
Dystrophin is a very large muscle protein (approximately 400 kd) the deficiency of which is responsible for Duchenne muscular dystrophy. Its function is unknown at present. In order to know whether different domains of the protein are differentially conserved during evolution, we have cloned and sequenced the chicken dystrophin cDNA. The protein coding(More)