Learn More
Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac(More)
An electrophysiologic mapping technique which enables identification of the central sulcus and pathologic cortical regions is described. Electrocorticographic recordings of 1 min duration were recorded from 25 patients who were undergoing resection of tumors in the sensory-motor region or being evaluated for temporal lobectomy for epilepsy. Analysis of the(More)
The reduced form of graphene oxide (GO) is an attractive alternative to graphene for producing large-scale flexible conductors and for creating devices that require an electronic gap. We report on a means to tune the topographical and electrical properties of reduced GO (rGO) with nanoscopic resolution by local thermal reduction of GO with a heated atomic(More)
Graphene nanoribbons will be essential components in future graphene nanoelectronics. However, in typical nanoribbons produced from lithographically patterned exfoliated graphene, the charge carriers travel only about ten nanometres between scattering events, resulting in minimum sheet resistances of about one kilohm per square. Here we show that(More)
Recently discovered multilayered epitaxial graphene (MEG) consists of un-charged and electronically decoupled graphene layers. Its properties are well described by those of a single graphene sheet. The Dirac particle properties in MEG are more compelling than in exfoliated graphene: the Fermi level is found to be within a few meV of the well-defined Dirac(More)
The maximum oscillation frequency (fmax) quantifies the practical upper bound for useful circuit operation. We report here an fmax of 70 GHz in transistors using epitaxial graphene grown on the C-face of SiC. This is a significant improvement over Si-face epitaxial graphene used in the prior high-frequency transistor studies, exemplifying the superior(More)
BACKGROUND Mediastinal involvement (MI) in Langerhans cell histiocytosis (LCH) has been rarely reported. Here, we describe the clinical, radiological, and biological presentation, and the outcome of childhood LCH with MI. METHOD From the French LCH register, which includes 1,423 patients aged less than 18 years, we retrieved the medical charts of patients(More)
Electronic carriers in graphene show a high carrier mobility at room temperature. Thus, this system is widely viewed as a potential future charge-based high-speed electronic material to complement-or replace-silicon. At the same time, the spin properties of graphene have suggested improved capability for spin-based electronics or spintronics and spin-based(More)
The formation of carbon nanotubes in a pure carbon arc in a helium atmosphere is found to involve liquid carbon. Electron microscopy shows a viscous liquid-like amorphous carbon layer covering the surfaces of nanotube-containing millimeter-sized columnar structures from which the cathode deposit is composed. Regularly spaced, submicrometer-sized spherical(More)
We report the fabrication and characterization of freestanding graphene coated ZnO nanowires (GZNs) for optical waveguiding. The GZNs are fabricated using a tape-assist transfer under micromanipulation. Owing to the deep-subwavelength diameter and high index contrast of the ZnO nanowire waveguide, light-graphene interaction is significantly enhanced by the(More)