Claes F Lundström

Learn More
This paper presents a procedure for virtual autopsies based on interactive 3D visualizations of large scale, high resolution data from CT-scans of human cadavers. The procedure is described using examples from forensic medicine and the added value and future potential of virtual autopsies is shown from a medical and forensic perspective. Based on the(More)
Direct volume rendering (DVR) is of increasing diagnostic value in the analysis of data sets captured using the latest medical imaging modalities. The deployment of DVR in everyday clinical work, however, has so far been limited. One contributing factor is that current transfer function (TF) models can encode only a small fraction of the user's domain(More)
Direct volume rendering has proved to be an effective visualization method for medical data sets and has reached wide-spread clinical use. The diagnostic exploration, in essence, corresponds to a tissue classification task, which is often complex and time-consuming. Moreover, a major problem is the lack of information on the uncertainty of the(More)
Medical imaging plays a central role in a vast range of healthcare practices. The usefulness of 3D visualizations has been demonstrated for many types of treatment planning. Nevertheless, full access to 3D renderings outside of the radiology department is still scarce even for many image-centric specialties. Our work stems from the hypothesis that this(More)
The size of standard volumetric data sets in medical imaging is rapidly increasing causing severe performance limitations in direct volume rendering pipelines. The methods presented in this paper exploit the medical knowledge embedded in the transfer function to reduce the required bandwidth in the pipeline. Typically, medical transfer functions cause large(More)
We present a direct interblock interpolation technique that enables direct volume rendering of blocked, multiresolution volumes. The proposed method smoothly interpolates between blocks of arbitrary block-wise level-of-detail (LOD) without sample replication or padding. This permits extreme changes in resolution across block boundaries and removes the(More)
Direct Volume Rendering (DVR) is known to be of diagnostic value in the analysis of medical data sets. However, its deployment in everyday clinical use has so far been limited. Two major challenges are that the current methods for Transfer Function (TF) construction are too complex and that the tissue separation abilities of the TF need to be extended. In(More)
Reliable measurements of spinal deformities in idiopathic scoliosis are vital, since they are used for assessing the degree of scoliosis, deciding upon treatment and monitoring the progression of the disease. However, commonly used two dimensional methods (e.g. the Cobb angle) do not fully capture the three dimensional deformity at hand in scoliosis, of(More)
Autopsies constitute a valuable feedback to the healthcare chain to achieve improvements in quality of care and cost effectiveness. This review describes post-mortem imaging, which has emerged as an important part of the pathology toolbox. A broad range of visualization aspects within post-mortem imaging are covered. General state-of-the-art overviews of(More)
Recent technological advances have improved the whole slide imaging (WSI) scanner quality and reduced the cost of storage, thereby enabling the deployment of digital pathology for routine diagnostics. In this paper we present the experiences from two Swedish sites having deployed routine large-scale WSI for primary review. At Kalmar County Hospital, the(More)