Cl Paul Thomas

Learn More
The rapid, accurate and non-invasive diagnosis of respiratory disease represents a challenge to clinicians, and the development of new treatments can be confounded by insufficient knowledge of lung disease phenotypes. Exhaled breath contains a complex mixture of volatile organic compounds (VOCs), some of which could potentially represent biomarkers for lung(More)
A pulsed corona discharge ionisation source, a candidate replacement for 63Ni ionisation sources for ion mobility spectrometry, is described along with a new design of ion mobility spectrometer-mass spectrometer. Preliminary research on the characterisation of the reactant ion peaks associated with the use of this ionisation source was undertaken by(More)
Ion mobility spectrometry (IMS) is an electrophoretic technique that allows ionised analyte molecules to be separated on the basis of their mobilities in the gas phase. The technique has found widespread application as a detector, most noticeably for chemical warfare agents on the battlefield and for explosives and narcotics at ports and airports. The(More)
A thermally-desorbed polydimethylsilicone (PDMS) membrane approach with analysis by gas chromatography-mass spectrometry has been developed and characterised, to enable the VOC arising in, and on skin, from glandular secretions, exogenous materials, products of perfusion from blood, and microbiological metabolites to be sampled in a single procedure.(More)
An adaptive sampler for collecting 2.5 dm(3) samples of exhaled air from human subjects with an impaired respiratory function is described. Pressure in the upper respiratory tract is continuously monitored and the data used to control an automated system to collect select portions of the expired breathing cycle onto a mixed bed Tenax(trade mark) and(More)
BACKGROUND Confounding factors in the analysis of human breath by thermal desorption GC-MS are reviewed, with special emphasis on the high water levels encountered in human breath samples. RESULTS Multilinear regression optimization of breath sampling factors, along with the selection of ubiquitous sample components used as retention-time standards,(More)
An electrospray ionisation triple quadrupole mass spectrometer (Varian 1200 L) was modified to accept nitrogen samples containing low concentrations of volatile organic compounds. Six candidate probe compounds, methyl decanoate, octan-3-one, 2-ethylhexanoic acid, 1,4-diaminobutane, dimethyl methylphosphonate, and 2,3-butanediol, at concentrations below 50(More)
Discrimination of bacteria was investigated using pyrolysis-gas chromatography-differential mobility spectrometry (Py-GC-DMS). Three strains belonging to the genus Bacillus were investigated and these included two strains of Bacillus subtilis and a single Bacillus megaterium. These were chosen so as to evaluate the possibility of bacterial strain(More)
A complex profile of volatile organic compounds ("VOC"s) emanates from human skin, which is altered by changes in the body's metabolic or hormonal state, the external environment, and the bacterial species colonizing the skin surface. The aim of this study was to compare VOC profiles sampled from chronic leg wounds with those from asymptomatic skin. Five(More)
AIM Breath analyses have potential to detect early signs of disease onset. Ambient ionization allows direct combination of breath gases with MS for fast, on-line analysis. Portable MS systems would facilitate field/clinic-based breath analyses. Results & methodology: Volunteers ingested peppermint oil capsules and exhaled volatile compounds were monitored(More)