Clément Stahl

Learn More
Coarse woody debris (CWD, dead wood sections ≥10 cm diameter) represents a large store of carbon in tropical forests; however, estimates of the flux of carbon from CWD in these forests remain poorly constrained. The objective of this study was to resolve the dry/wet season response of respiration in CWD (R cwd), and investigate the importance of biotic and(More)
While Amazonian forests are extraordinarily diverse, the abundance of trees is skewed strongly towards relatively few 'hyperdominant' species. In addition to their diversity, Amazonian trees are a key component of the global carbon cycle, assimilating and storing more carbon than any other ecosystem on Earth. Here we ask, using a unique data set of 530(More)
• Climate models for the coming century predict rainfall reduction in the Amazonian region, including change in water availability for tropical rainforests. Here, we test the extent to which climate variables related to water regime, temperature and irradiance shape the growth trajectories of neotropical trees. • We developed a diameter growth model(More)
The relative contribution of gross primary production and ecosystem respiration to seasonal changes in the net carbon flux of tropical forests remains poorly quantified by both modelling and field studies. We use data assimilation to combine nine ecological time series from an eastern Amazonian forest, with mass balance constraints from an ecosystem carbon(More)
Climate models predict a range of changes in tropical forest regions, including increased average temperatures, decreased total precipitation, reduced soil moisture and alterations in seasonal climate variations. These changes are directly related to the increase in anthropogenic greenhouse gas concentrations, primarily CO2. Assessing seasonal forest growth(More)
Large seasonal variation in the rate of change in girth of tropical rain-forest tree species has been described, but its origin is still under debate. We tested whether this variation might be related to variation in atmospheric relative humidity through its influence on bark water content and thickness. Variation in trunk circumference of 182 adult trees(More)
Stem CO2 efflux (E s) is a significant component of total ecosystem respiration, but there is only scant information on seasonal variations in E s in tropical rainforests and on the main factors explaining these variations. We conducted a comprehensive 18-month study in French Guiana to try to better understand which environmental factors contribute to(More)
We review the recent findings on the influence of drought on tree mortality, growth or ecosystem functioning in tropical rainforests. Drought plays a major role in shaping tropical rainforests and the response mechanisms are highly diverse and complex. The numerous gaps identified here require the international scientific community to combine efforts in(More)
The seasonal climate drivers of the carbon cycle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combination of seasonal pan-tropical data sets from 89 experimental sites (68 include aboveground wood productivity measurements and 35(More)
Though the root biomass of tropical rainforest trees is concentrated in the upper soil layers, soil water uptake by deep roots has been shown to contribute to tree transpiration. A precise evaluation of the relationship between tree dimensions and depth of water uptake would be useful in tree-based modelling approaches designed to anticipate the response of(More)