Learn More
The microtubule cytoskeleton plays a fundamental role in cell organization and membrane traffic in higher eukaryotes. It is well established that molecular motors are involved in membrane-microtubule interactions, but it has also been proposed that nonmotor microtubule-binding (MTB) proteins known as CLIPs (cytoplasmic linker proteins) have basic roles in(More)
Here we report an approach, based on antibody phage display, to generate molecular conformation sensors. Recombinant antibodies specific to the guanosine triphosphate (GTP)-bound conformation of the small guanosine triphosphatase (GTPase) Rab6, a regulator of membrane traffic, were generated and used to locate Rab6.GTP in fixed cells, and, after green(More)
The function of the pre-Golgi intermediate compartment (IC) and its relationship with the endoplasmic reticulum (ER) and Golgi remain only partially understood. Here, we report striking segregation of IC domains in polarized PC12 cells that develop neurite-like processes. Differentiation involves expansion of the IC and movement of Rab1-containing tubules(More)
BACKGROUND Genomic, transcriptomic and proteomic projects often suffer from a lack of functional validation creating a strong demand for specific and versatile antibodies. Antibody phage display represents an attractive approach to select rapidly in vitro the equivalent of monoclonal antibodies, like single chain Fv antibodies, in an inexpensive and animal(More)
In mitosis, the Golgi complex is inherited following its dispersion, equal partitioning and reformation in each daughter cell. The state of Golgi membranes during mitosis is controversial, and the role of Golgi-intersecting traffic in Golgi inheritance is unclear. We have used brefeldin A (BFA) to perturb Golgi-intersecting membrane traffic at different(More)
BACKGROUND Due to their unique ability to bind their targets with high fidelity, antibodies are used widely not only in biomedical research, but also in many clinical applications. Recombinant antibodies, including single chain variable fragments (scFv), are gaining momentum because they allow powerful in vitro selection and manipulation without loss of(More)
Variation and selection are the core principles of Darwinian evolution, but quantitatively relating the diversity of a population to its capacity to respond to selection is challenging. Here, we examine this problem at a molecular level in the context of populations of partially randomized proteins selected for binding to well-defined targets. We built(More)
  • 1