Learn More
Various multi-echo and Full-waveform (FW) lidar features can be processed. In this paper, multiple classifers are applied to lidar feature selection for urban scene classification. Random forests are used since they provide an accurate classification and run efficiently on large datasets. Moreover, they return measures of variable importance for each class.(More)
Unlike airborne multi-echo laser scanner systems, full-waveform systems are able to digitize and record the entire backscattered signal of each laser pulse. It has been demonstrated that decomposing the return waveforms into a mixture of Gaussian components was suitable. In this paper, we focus on the improvement of peak detection and of raw signal(More)
We present a robust method for modeling cities from un-structured point data. Our algorithm provides a more complete description than existing approaches by reconstructing simultaneously buildings, trees and topologically complex grounds. Buildings are modeled by an original approach which guarantees a high generalization level while having semantized and(More)
In contrast to conventional airborne multi-echo laser scanner systems, full-waveform (FW) lidar systems are able to record the entire emitted and backscattered signal of each laser pulse. Instead of clouds of individual 3D points, FW devices provide connected 1D profiles of the 3D scene, which contain more detailed and additional information about the(More)
This papers presents a multi-scale method that computes robust geometric features on lidar point clouds in order to retrieve the optimal neighborhood size for each point. Three dimensionality features are calculated on spherical neighborhoods at various radius sizes. Based on combinations of the eigenvalues of the local structure tensor, they describe the(More)
The automatic analysis of large 3D point clouds represents a crucial task in photogrammetry, remote sensing and computer vision. In this paper, we propose a new methodology for the semantic interpretation of such point clouds which involves feature relevance assessment in order to reduce both processing time and memory consumption. Given a standard(More)
In contrast to conventional airborne multi-echo laser scanner systems, full-waveform (FW) lidar systems are able to record the entire emitted and backscattered signals of each laser pulse. Instead of clouds of individual 3D points, FW devices provide 1D profiles of the 3D scene, which allows gaining additional and more detailed observations of the(More)
We propose a context-based classification method for point clouds acquired by full waveform airborne laser scanners. As these devices provide a higher point density and additional information like echo width or type of return, an accurate distinction of several object classes is possible. However, especially in dense urban areas correct labelling is a(More)
This article presents the use of new remote sensing data acquired from airborne full-waveform lidar systems. They are active sensors which record altimeter profiles. This paper introduces a set of methodologies for processing these data. These techniques are then applied to a particular landscape , the badlands, but the methodologies are designed to be(More)
We present a novel and robust method for modeling cities from 3D-point data. Our algorithm provides a more complete description than existing approaches by reconstructing simultaneously buildings, trees and topologically complex grounds. A major contribution of our work is the original way of modeling buildings which guarantees a high generalization level(More)